K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017
x^2 + y^2 + x^2 >= 1/3
<=> x^2 + y^2 + x^2 >= (x + y + z)/3 ( vì x + y + z = 1)
<=> x^2 + y^2 + x^2 - (x + y + z)/3 >= 0
<=> 3x^2 + 3y^2 + 3z^2 - x - y - z >= 0
<=> x(3x - 1) + y(3y - 1) + z(3z - 1) >= 0
<=> x(3x - x - y - z) + y(3y - x - y - z) + z(3z - x - y - z) >= 0
<=> x(2x - y - z) + y(2y - x -z) + z(2z - x - y) >= 0
<=> 2x^2 - xy - xz + 2y^2 - xy - yz + 2z^2 - xz - yz >= 0
<=> (x^2 - 2xy - y^2) + (y^2 - 2yz - z^2) + (x^2 - 2xz - z^2) >= 0
<=> (x - y)^2 + (y - z)^2 - (x - z)^2 >= 0 (đúng)
=> x^2 + y^2 + x^2 >= 1/3

Dấu = xảy ra <=> x = y = z =1/3
10 tháng 5 2017

Cách làm của Nguyễn Đặng Thanh Trúc hơi dài , mik làm cchs khác nhé :

==================

Áp dụng BDDT Co- si dạng engel

Ta có : x2 + y2 + z2 \(\ge\dfrac{\left(x+y+z\right)^2}{1+1+1}=\dfrac{1}{3}\)

Dấu "=" xảy ra khi : x=y=z =1/3

Bài 3: 

\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)

\(=\left(x^2-9\right)\left(x^2-1\right)+15\)

\(=x^4-10x^2+9+15\)

\(=x^4-10x^2+24\)

\(=\left(x^2-4\right)\left(x^2-6\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)

 

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

6 tháng 3 2020

Ta có : \(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng vào bài toán có :

\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)

Áp dụng BĐT Svacxo ta có :

\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)\(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\)\(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)

Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)

P/s : Dấu "=" không chắc lắm :))

7 tháng 3 2020

thanks bạn mình hiểu sương sương rồi:))