\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng bất đẳng thức Cauchy-Schwarz,ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{\left(x+y+z\right)^2}=\frac{9}{9}=1.\)(đpcm)

4 tháng 6 2019

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2xz+2yz}=\frac{9}{\left(x+y+z\right)^2}=1\)

( áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\))

AH
Akai Haruma
Giáo viên
30 tháng 5 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\right)[(x^2+2yz)+(y^2+2xz)+(z^2+2xy)]\geq (1+1+1)^2\)

\(\Leftrightarrow \frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\geq \frac{9}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{(x+y+z)^2}=\frac{9}{3^2}=1\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

9 tháng 8 2016

\(\hept{\begin{cases}2yz\le y^2+z^2\\2zx\le z^2+x^2\\2xy\le x^2+y^2\end{cases}}\)

\(VT\ge\frac{x^2}{x^2+y^2+z^2}+\frac{y^2}{x^2+y^2+z^2}+\frac{z^2}{x^2+y^2+z^2}=1\)

12 tháng 8 2016

\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2zx}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2zx+z^2+2xy}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

NV
3 tháng 6 2019

Đặt \(\left\{{}\begin{matrix}\frac{x}{y}=a\\\frac{y}{z}=b\\\frac{z}{x}=c\end{matrix}\right.\) \(\Rightarrow abc=1\)

\(P=\frac{2b}{c}+\frac{2c}{a}+\frac{2a}{b}-a-b-c-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\)

\(P=2ab^2+2bc^2+2a^2c-a-b-c-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\)

\(ab^2+a\ge2ab\Rightarrow ab^2\ge2ab-a\) ; \(ab^2+\frac{1}{a}\ge2b\Rightarrow ab^2\ge2b-\frac{1}{a}\)

\(\Rightarrow2ab^2\ge2ab+2b-a-\frac{1}{a}\)

Tương tự và cộng lại:

\(\Rightarrow P\ge2\left(ab+ac+bc\right)+2\left(a+b+c\right)-2\left(a+b+c\right)-2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{2\left(ab+ac+bc\right)}{abc}-2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z\)

a) Áp dụng bất đẳng thức Cauchy-Schwarz , ta được
\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=1\)(đpcm)

29 tháng 4 2020

Ta có: 

\(15\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)=10\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+2014\)

\(\le10\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2014\)

=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le\frac{2014}{5}\)

\(P=\frac{1}{\sqrt{5x^2+2xy+2yz}}+\frac{1}{\sqrt{5y^2+2yz+2zx}}+\frac{1}{\sqrt{5z^2+2zx+2xy}}\)

=> \(P\sqrt{\frac{2014}{135}}=\frac{1}{\sqrt{5x^2+2xy+2yz}.\sqrt{\frac{135}{2014}}}\)

\(+\frac{1}{\sqrt{5y^2+2yz+2zx}\sqrt{\frac{135}{2014}}}+\frac{1}{\sqrt{\frac{135}{2014}}\sqrt{5z^2+2zx+2xy}}\)

\(\le\frac{1}{2}\left(\frac{1}{5x^2+2xy+2yz}+\frac{2014}{135}+\frac{1}{5y^2+2yz+2zx}+\frac{2024}{135}+\frac{1}{5z^2+2yz+2zx}+\frac{2014}{135}\right)\)

\(\le\frac{1}{2}\left[\frac{1}{81}\left(\frac{5}{x^2}+\frac{2}{xy}+\frac{2}{yz}\right)+\frac{1}{81}\left(\frac{5}{y^2}+\frac{2}{yz}+\frac{2}{zx}\right)+\frac{1}{81}\left(\frac{5}{z^2}+\frac{2}{zx}+\frac{2}{xy}\right)+\frac{2014}{45}\right]\)

\(=\frac{5}{162}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+\frac{2}{81}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{1007}{45}\)

\(\le\frac{5}{162}.\frac{2014}{5}+\frac{2}{81}.\frac{2014}{5}+\frac{1007}{45}=\frac{2014}{45}\)

=> \(P\le\frac{2014}{45}:\sqrt{\frac{2014}{135}}=3\sqrt{\frac{2014}{135}}\)

Dấu "=" xảy ra <=> x = y = z = \(\sqrt{\frac{15}{2014}}\)

29 tháng 5 2017

từ giả thiết ta suy ra \(\sqrt[3]{x^2y^2z^2}\ge3\)

lại có x2 + 2yz = x2 + yz + yz \(\ge\)3\(\sqrt[3]{x^2y^2z^2}\)\(\ge\)9

nên \(\frac{1}{x^2+2yz}\le\frac{1}{9}\)

tương tự với 2 số còn lại nên ta được P \(\le\frac{1}{3}\)

dấu "=" xảy ra khi x = y = z = \(\sqrt{3}\)

17 tháng 2 2020

\(RHS\ge\frac{\left(x+y+z\right)^2}{\sqrt{5x^2+2xy+y^2}+\sqrt{5y^2+2yz+z^2}+\sqrt{5z^2+2zx+x^2}}\)

Thử chứng minh \(\sqrt{5x^2+2xy+y^2}\le\frac{3\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y\) cái này xem sao

khi đó:

\(RHS\ge\frac{9}{\frac{3\sqrt{2}}{2}\left(x+y+z\right)+\frac{\sqrt{2}}{2}\left(x+y+z\right)}=\frac{3}{2\sqrt{2}}\)

Dấu "=" xảy ra tại x=y=z=1

20 tháng 2 2020

Cần chứng minh BĐT sau : \(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}\ge\frac{5x-y}{8\sqrt{2}}\)

\(\Leftrightarrow8\sqrt{2}x^2\ge\left(5x-y\right)\sqrt{5x^2+2xy+y^2}\) ( 1 )

Xét 5x - y \(\le\)\(\Rightarrow\)VT \(\ge\)0 ; VP \(\le\)\(\Rightarrow\)BĐT đã được chứng minh

Xét 5x - y \(\ge\)0 . Bình phương 2 vế của ( 1 ), ta được :

\(128x^4\ge\left(25x^2-10xy+y^2\right)\left(5x^2+2xy+y^2\right)\)

\(\Leftrightarrow128x^4\ge125x^4+10x^2y^2-8xy^3+y^4\)

\(\Leftrightarrow3x^4-10x^2y^2+8xy^3-y^4\ge0\)

\(\Leftrightarrow\left(3x^4-3xy^3\right)+\left(10xy^3-10x^2y^2\right)+\left(xy^3-y^4\right)\ge0\)

\(\Leftrightarrow3x\left(x-y\right)\left(x^2+xy+y^2\right)+10xy^2\left(y-x\right)+y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(3x^3+3x^2y+3xy^2-10xy^2+y^3\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left[\left(3x^3-3xy^2\right)+\left(3x^2y-3xy^2\right)-\left(xy^2-y^3\right)\right]\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(3x^2+6xy-y^2\right)\ge0\)( luôn đúng )

( Vì \(5x-y\ge0\Rightarrow x\ge\frac{y}{5}\)\(\Rightarrow3x^2+6xy-y^2\ge3.\left(\frac{y}{5}\right)^2+6.\frac{y}{5}.y-y^2=\frac{8}{25}y^2\ge0\)

Tương tự : \(\frac{y^2}{\sqrt{5y^2+2yz+z^2}}\ge\frac{5y-z}{8\sqrt{2}}\)\(\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\ge\frac{5z-x}{8\sqrt{2}}\)

Cộng từng vế 3 BĐT lại với nhau, ta được : 

\(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}+\frac{y^2}{\sqrt{5y^2+2yz+z^2}}+\frac{z^2}{\sqrt{5z^2+2xz+x^2}}\)

\(\ge\frac{5x-z+5y-z+5z-x}{8\sqrt{2}}=\frac{4\left(x+y+z\right)}{8\sqrt{2}}=\frac{3}{2\sqrt{2}}\)

Dấu "=' xảy ra khi x = y = z = 1

Vậy BĐT đã được chứng minh

19 tháng 8 2016

Áp dụng bđt \(\frac{m^2}{a}+\frac{n^2}{b}+\frac{p^2}{c}\ge\frac{\left(m+n+p\right)^2}{a+b+c}\) (bạn tự chứng minh)

Được : \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

\(\Rightarrow\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge1\) (đpcm)

 

19 tháng 8 2016

Ta có : \(\begin{cases}2yz\le y^2+z^2\\2zx\le z^2+x^2\\2xy\le x^2+y^2\end{cases}\)

\(VT\ge\frac{x^2}{x^2+y^2+z^2}+\frac{y^2}{x^2+y^2+z^2}+\frac{z^2}{x^2+y^2+z^2}=1\)