K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

Ta có: |2x+3y|\(\ge0\)

|4y+5z|\(\ge0\)

|xy+yz+xz+110|\(\ge0\)

\(\Rightarrow\) l2x+3yl+l4y+5zl+lxy+yz+xz+110l\(\ge0\)

hay P \(\ge0\)

\(\Rightarrow\)GTNN của P=0

Dấu "="xảy ra khi:

\(\hept{\begin{cases}\left|2x+3y\right|=0\\\left|4y+5z\right|=0\\\left|xy+yz+xz+110\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}2x+3y=0\\4y+5z=0\\xy+yz+xz+110=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\\\\xy+yz+xz=-110\end{cases}}\)

27 tháng 12 2017

Để tối mk giải cho

25 tháng 2 2020

Ta có: \(\left|2x+3y\right|\ge0\)\(\forall x,y\inℝ\)\(\left|4y+5z\right|\ge0\)\(\forall y,z\inℝ\)\(\left|xy+yz+zx+110\right|\ge0\)\(\forall x,y,z\inℝ\)

Nên: \(P=\left|2x+3y\right|+\left|4y+5z\right|+\left|xy+yz+xz+110\right|\ge0\)\(\forall x,y,z\inℝ\)

Dấu " = " xảy ra <=> \(\left|2x+3y\right|+\left|4y+5z\right|+\left|xy+yz+xz+110\right|=0\)

Có: \( \left|2x+3y\right|=0\)\(\Leftrightarrow2x+3y=0\)\(\Leftrightarrow2x=-3y\)\(\Leftrightarrow\frac{x}{-3}=\frac{y}{2}\)

\(\left|4y+5z\right|=0\)\(\Leftrightarrow4y+5z=0\)\(\Leftrightarrow4y=-5z\)\(\Leftrightarrow\frac{y}{-5}=\frac{z}{4}\)

\(\left|xy+yz+zx+110\right|=0\)\(\Leftrightarrow xy+yz+zx+110=0\)\(\Leftrightarrow xy+yz+zx=-110\)

Lại có: \(\frac{x}{-3}=\frac{y}{2}\)\(\Rightarrow\frac{x}{15}=\frac{y}{-10}\) (1) ;  \(\frac{y}{-5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{-10}=\frac{z}{8}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{-10}=\frac{z}{8}=k\)=> x = 15k ; y = (-10) . k ; z = 8k

Ta có: \(xy+yz+zx=-110\)\(\Rightarrow15k\left(-10\right)k+8k\left(-10\right)k+8k.15k=-110\)

\(\Rightarrow k^2\left(-150\right)+k^2\left(-80\right)+120k^2=-110\)

\(\Rightarrow k^2\left(-110\right)=-110\)\(\Rightarrow k^2=1\)\(\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)

+) Th1: k = 1   

Có: x = 15k = 15 . 1 = 15

y = (-10) . k = (-10) . 1 = -10

z = 8k = 8 . 1 = 8

+) Th2: k = -1

Có: x = 15k = 15 . (-1) = -15 

y = (-10) . k = (-10) . (-1) = 10

z = 8k = 8 . (-1) = -8

Vậy GTNN P = 0 <=> (x; y; z) = (15; -10; 8) hoặc (x; y; z) = (-15; 10; -8)

\(A=\frac{x}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{z}{xz+z+xyz}\)

\(=\frac{1+y+yz}{y+yz+1}=1\)

25 tháng 6 2023

mình vô tri quá :")

8 tháng 8 2017

Ace đã lm rồi . nhưng để mk lm lại ; dể hiểu hơn chút nha

bài làm : ta áp dụng bất đẳng thức cô si cho các cặp lần lược là

* \(x^2vày^2\) ta có : \(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

* \(y^2vàz^2\) ta có : \(y^2+z^2\ge2\sqrt{y^2z^2}=2yz\)

* \(z^2vàx^2\) ta có : \(z^2+x^2\ge2\sqrt{z^2x^2}=2zx\)

* \(x^2và1\) ta có : \(x^2+1\ge2\sqrt{x^2.1}=2x\)

* \(y^2và1\) ta có : \(y^2+1\ge2\sqrt{y^2.1}=2y\)

* \(z^2và1\) ta có : \(z^2+1\ge2\sqrt{z^2.1}=2z\)

ta cộng tất cả theo từng quế ta có :

\(3x^2+3y^2+3z^2+3\ge2xy+2yz+2zx+2x+2y+2z\)

\(\Leftrightarrow3\left(x^2+y^2+z^2+1\right)\ge2\left(xy+yz+zx+x+y+z\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2+1\right)\ge2.6=12\Leftrightarrow x^2+y^2+z^2+1\ge4\)

\(\Leftrightarrow x^2+y^2+z^2\ge4-1=3\)

\(\Rightarrow Min\) của biểu thức trên là 3

dấu "=" xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\) \(x=y=z=1\)

vậy giá trị nhỏ nhất của biểu thức \(x^2+y^2+z^2\) là 3 khi \(x=y=z=1\)

8 tháng 8 2017

Câu hỏi của Đinh Tuấn Việt - Toán lớp 8 | Học trực tuyến

7 tháng 3 2019

TA CÓ \(\frac{x}{xy+x+1}\)+\(\frac{y}{yz+y+1}\)+\(\frac{z}{xz+z+1}\)

         =\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xyz+xy+x}\)+\(\frac{xyz}{x^2yz+xyz+xy}\)

         =\(\frac{x}{xy+x+1}\)+\(\frac{xy}{xy+x+1}\)+\(\frac{1}{xy+x+1}\)(vì xyz=1)

        =\(\frac{x+xy+1}{xy+x+1}\)

        = 1

2 tháng 10 2016

Ta có \(x+y+z=1\Rightarrow x+y=1-z,\) ta có:

\(\frac{x+y}{\sqrt{xy+z}}=\frac{1-z}{\sqrt{xy+1-x-y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}\)

\(\frac{y+z}{\sqrt{yz+x}}=\frac{1-x}{\sqrt{yz+1-y-z}}=\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}\)

\(\frac{z+x}{\sqrt{zx+y}}=\frac{1-y}{\sqrt{zx+1-x-z}}=\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)

Khi đó \(P=\frac{x+y}{\sqrt{xy+z}}+\frac{y+z}{\sqrt{yz+x}}+\frac{z+x}{\sqrt{zx+y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}+\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}+\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)

               \(\ge3\sqrt[3]{\frac{1-z}{\left(1-x\right)\left(1-y\right)}\times\frac{1-x}{\left(1-y\right)\left(1-z\right)}\times\frac{1-y}{\left(1-x\right)\left(1-z\right)}}=3\)

Vậy \(MinP=3\) đạt được khi \(x=y=z=\frac{1}{3}\) 

14 tháng 5 2017

\(P=\dfrac{x+y}{\sqrt{xy+z}}+\dfrac{y+z}{\sqrt{yz+x}}+\dfrac{z+x}{\sqrt{xz+y}}\)

\(P=\dfrac{x+y}{\sqrt{xy+\left(x+y+z\right)z}}+\dfrac{y+z}{\sqrt{yz+\left(x+y+z\right)x}}+\dfrac{x+z}{\sqrt{zx+\left(x+y+z\right)y}}\)

\(P=\dfrac{x+y}{\sqrt{xy+xz+yz+z^2}}+\dfrac{y+z}{\sqrt{yz+x^2+xy+xz}}+\dfrac{x+z}{\sqrt{xz+xy+y^2+yz}}\)

\(P=\dfrac{x+y}{\sqrt{\left(x+z\right)\left(y+z\right)}}+\dfrac{y+z}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{x+z}{\sqrt{\left(x+y\right)\left(y+z\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow P\ge3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}}}=3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}=3\)

\(\Rightarrow P\ge3\)

Vậy \(P_{min}=3\)

Dấu " = " xảy ra khi \(x=y=z=\dfrac{1}{3}\)