K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

\(x^3+y^3+z^3+6=3\left(x^2+y^2+z^2\right)\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz+6=3\left(x^2+y^2+z^2\right)\)Mà x+y+z=3

\(\Rightarrow3\left(x^2+y^2+z^2-xy-xz-yz\right)+3xyz+6=3\left(x^2+y^2+z^2\right)\)

\(\Rightarrow x^2+y^2+z^2-xy-yz-xz+xyz+2=x^2+y^2+z^2\)

\(\Rightarrow xyz-xy-yz-xz+2=0\Rightarrow\left(xyz-xy\right)-\left(yz-y\right)-\left(xz-x\right)+\left(2-x-y\right)=0\)

\(\Rightarrow xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(2-3+z\right)=0\Rightarrow xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)=0\)

\(\Rightarrow\left(z-1\right)\left(xy-x-y+1\right)=0\Rightarrow\left(z-1\right)\left[\left(xy-x\right)-\left(y-1\right)\right]=0\Rightarrow\left(z-1\right)\left[x\left(y-1\right)-\left(y-1\right)\right]=0\)

\(\Rightarrow\left(z-1\right)\left(x-1\right)\left(y-1\right)=0\)

Suy ra có ít nhất 1 trong 3 số x,y,z bằng 1,khi đó A=0

Vậy A=0

9 tháng 2 2018

ban oi

15 tháng 3 2015

ta có (x+y+z)3 = (x+y)3 + [3(x+y)2z + 3(x+y).z2 ]+ z3 = (x3 + 3x2y + 3xy2 + y3 )+ 3 (x+y).z.(x+y+z) + z3

x3 + y3 + z3 + 3xy (x+y) + 3z(x+y) (vì x+y + z = 1)

= 1 + 3(x+y).(xy + z) = 1+ 3(x+y)(xy+z) = 1 

=> x+y = 0 hoặc xy +z = 0

Nếu x+ y = 0 => x=-y và z = 1 => S = x2013 + (-x)2015 + 12017 + 2019 = x2013 - x2015 +2020 (có thể đề là y2013

Nếu xy + z = 0 => z = -xy => x + y -xy - 1 = 0 => x(1-y) -(1-y) = 0 => (x-1)(1-y) = 0 => x = 1 hoặc y = 1

x = 1 => z = -y làm tương tự như trên

* đề nên sửa số mũ của x, y, z đều bằng nhau và bằng số lẻ

22 tháng 11 2016

Bạn Trần thị Loan trả lời sai mất rồi

12 tháng 2 2020

Ta có: \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)

<=> \(\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)

<=> \(\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)

<=> \(\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{cases}}\) 

<=> \(\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\\z=\frac{1}{z}\end{cases}}\)

<=> \(\hept{\begin{cases}x^2=1\\y^2=1\\z^2=1\end{cases}}\)

<=> x = y = z = \(\pm\)1

Với x = y = z = 1 => P = 12018 + 12019 + 12020 = 3

     x = y = z = -1 => P = (-1)2018 + (-1)2019 + (-1)2020 = 1

Vậy ...

5 tháng 5 2020

bạn chịu khó gõ link này lên google

https://olm.vn/hoi-dap/detail/60436537466.html