K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2015

\(VT=\sum\frac{2}{x^2+y^2}=\sum\frac{x^2+y^2+z^2}{x^2+y^2}=\sum\left(1+\frac{z^2}{x^2+y^2}\right)\le3+\sum\frac{z^2}{2xy}=3+\frac{x^3+y^3+z^3}{2xyz}=VP\)

11 tháng 7 2018

Ta có : \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}=\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}+3\)

Ta lại có : \(x^2+y^2\le2xy\Leftrightarrow\frac{z^2}{x^2+y^2}\le\frac{z^2}{2xy}\)

               \(y^2+z^2\le2yz\Leftrightarrow\frac{x^2}{y^2+z^2}\le\frac{x^2}{2yz}\)    

              \(z^2+x^2\le2zx\Leftrightarrow\frac{y^2}{z^2+x^2}\le\frac{y^2}{2zx}\)

Cộng vế theo vế ta có :

\(\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}\le\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}\)

\(\Leftrightarrow\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}+3\le\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}+3\)

\(\Leftrightarrow\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}\le\frac{x^2+y^2+z^2}{2xyz}+3\)

\(\Rightarrowđpcm\)

22 tháng 7 2016

Đặt  \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\)  \(\left(\text{*}\right)\)

Khi đó, ta cần chứng minh bất đẳng thức  \(\left(\text{*}\right)\)  luôn đúng với mọi  \(x,y,z\in Z^+\)  và  \(x^2+y^2+z^2=2\)  \(\left(\alpha\right)\)

 \(VP\left(\text{*}\right)=\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}+3\)     

Ta có các bất đẳng thức quen thuộc đối với ba số  \(x,y,z\in Z^+\)    như sau:

\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}\)

Áp dụng các bất đẳng thức trên cho   \(VP\left(\text{*}\right)\)  ta được:

\(VP\left(\text{*}\right)\ge\left(\frac{x^2}{y^2+z^2}+1\right)+\left(\frac{y^2}{x^2+z^2}+1\right)+\left(\frac{z^2}{x^2+y^2}+1\right)=\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}+\frac{2}{x^2+y^2}\)  (theo  \(\left(\alpha\right)\)  )

Hay nói cách khác,   \(VP\left(\text{*}\right)\ge VT\left(\text{*}\right)\)

Vậy, bđt   \(\left(\text{*}\right)\)  được chứng minh.

Dấu   \("="\)  xảy ra  khi và chỉ khi  \(\hept{\begin{cases}x=y=z\\x^2+y^2+z^2=2\end{cases}\Leftrightarrow}\)  \(x=y=z=\sqrt{\frac{2}{3}}\)

               

22 tháng 7 2016

\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{x^2+z^2}\)


\(=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\)

Áp dụng BĐT cô-si cho các cặp số thực không âm sau: x2 và y2 ; y2 và z2 ; x2 và z2 ta được:

\(x^2+y^2\ge2xy\Rightarrow\frac{z^2}{x^2+y^2}\le\frac{z^2}{2xy}\left(1\right)\)

Tương tự ta được: \(\frac{x^2}{y^2+z^2}\le\frac{x^2}{2yz}\left(2\right);\frac{y^2}{x^2+z^2}\le\frac{y^2}{2xz} \left(3\right)\)

Từ (1) và (2) và (3) suy ra: \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}\le3+\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2xz}=3+\frac{x^3+y^3+z^3}{2xyz}\)

2 tháng 5 2017

ta có: \(VT=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\)

Áp dụng bất đẳng thức cauchy: \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}\)

do đó \(VT\le3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}=\frac{x^3+y^3+z^3}{2xyz}+3=VF\)

đẳng thức xảy ra khi x=y=z

9 tháng 2 2020

Bằng một số bước tính toán cơ bản, chúng ta có được:

\(VT-VP=\Sigma_{cyc}\frac{x\left(x-z\right)^2}{2\left(x^2+z^2\right)}\ge0\)

9 tháng 2 2020

tth_old : t chán cái kiểu SOS gì đó của m rồi đấy. 

13 tháng 3 2021

Theo giả thiết xy + yz + zx = 1 nên ta có: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}=\frac{1}{xy+yz+zx+x^2}+\frac{1}{xy+yz+zx+y^2}+\frac{1}{xy+yz+zx+z^2}=\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+x\right)\left(y+z\right)}+\frac{1}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Theo bất đẳng thức Cauchy-Schwarz: \(\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^2\le\left(x+y+z\right)\left(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\right)=\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(\Rightarrow\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\le\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)Ta cần chứng minh: \(\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)

hay \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3}{2}\)

Bất đẳng thức cuối đúng theo AM - GM do: \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+z}.\frac{y}{x+y}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\le\frac{\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\left(\frac{y}{y+z}+\frac{y}{x+y}\right)+\left(\frac{z}{z+x}+\frac{z}{z+y}\right)}{2}=\frac{3}{2}\)Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

22 tháng 6 2020

Theo AM - GM và Bunhiacopski ta có được 

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)

Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)

\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)

Đặt \(t=\frac{z}{x+y}\ge1\)

Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)

\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)

Vậy ta có đpcm

23 tháng 6 2020

Ta có:

\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)

Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\) 

29 tháng 1 2021

Ta có: \(\frac{x^2}{x^4+yz}\le\frac{x^2}{2\sqrt{x^4.yz}}=\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2\sqrt{yz}}\)(BĐt cosi) (1)

CMTT: \(\frac{y^2}{y^4+xz}\le\frac{1}{2\sqrt{xz}}\) (2)

\(\frac{z^2}{z^4+xy}\le\frac{1}{2\sqrt{xy}}\)(3)

Từ (1); (2) và (3) =>A =  \(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{\sqrt{xz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}\right)\)

      Áp dụng bđt \(ab+bc+ac\le a^2+b^2+c^2\)

cmt đúng: <=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng)

Khi đó: A \(\le\frac{1}{2}\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\cdot\frac{xy+yz+xz}{xyz}\le\frac{1}{2}\cdot\frac{x^2+y^2+z^2}{xyz}=\frac{3xyz}{2xyz}=\frac{3}{2}\)