K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

\(P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\)
\(P=\frac{\left[\left(\frac{x}{\sqrt{x^2+2yz}}\right)^2+\left(\frac{y}{\sqrt{y^2+2xz}}\right)^2+\left(\frac{z}{\sqrt{z^2+2xy}}\right)^2\right]\left[\sqrt{x^2+2yz}^2+\sqrt{y^2+2xz}^2+\sqrt{z^2+2xy}^2\right]}{x^2+2yz+y^2+2xz+z^2+2xy}\)

\(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)(Bunyakovski)

Dấu "=" xảy ra <=> \(\frac{x}{x^2+2yz}=\frac{y}{y^2+2xz}=\frac{z}{z^2+2xy}\Leftrightarrow x=y=z\)

Vậy GTNN P=1 <=> x=y=z

22 tháng 4 2019

Ngay ở trên hai cái [...] [...] nhân với nhau ấy, tại nó dài quá 

16 tháng 4 2019

Bạn tự c/m BĐT : \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Dấu " = " xảy ra ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2yz+2zx}+\frac{1}{z^2+2xy}\)\(\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=\frac{9}{1}=9\)

Bạn tự giải dấu bằng nhé.

Tổng đã cho của đề bài bằng bao nhiêu thế cậu

7 tháng 12 2018

\(\frac{x^2+y^2+z^2-2xy-2yz+2zx}{x^2-2xy+y^2-z^2}=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}=\frac{x-y+z}{x-y-z}\)

6 tháng 3 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\) \(\Rightarrow xy+yz+zx=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=-\left(yz+zx\right)\\yz=-\left(xy+zx\right)\\zx=-\left(xy+yz\right)\end{matrix}\right.\)

Thay vào ta có:

\(\frac{1}{x^2+2yz}=\frac{1}{x^2+yz+yz}=\frac{1}{x^2-xy+yz-zx}=\frac{1}{\left(x-z\right)\left(x-y\right)}\)

CMTT:

\(PT\Leftrightarrow\frac{1}{\left(x-y\right)\left(x-z\right)}+\frac{1}{\left(x-y\right)\left(z-y\right)}+\frac{1}{\left(z-y\right)\left(z-x\right)}\)

\(\Leftrightarrow\frac{\left(z-y\right)+\left(x-z\right)-\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(z-y\right)}=0\left(đpcm\right)\)

22 tháng 2 2019

pppppppppppppppppppppppppppppppppppppppppppppp'ppppppppppppppppppppppppppppp

ppppppppppppp

22 tháng 2 2019

Tao co:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow yz+xz+xy=0\)

\(Suyra:yz=-xz-xy;xz=-yz-xy;xy=-yz-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xz-xy=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

\(\Rightarrow y^2+2xz=y^2+xz-yz-xy=z\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(z-y\right)\)

\(\Rightarrow z^2+2xy=z^2+xy-yz-xz=z\left(z-y\right)-x\left(z-y\right)=\left(z-y\right)\left(z-x\right)\)

\(Thay:\frac{1}{\left(x-y\right)\left(x-z\right)}+\frac{1}{\left(x-y\right)\left(z-y\right)}+\frac{1}{\left(z-y\right)\left(z-x\right)}\)

\(=\frac{z-y+x-z-x+y}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\left(dpcm\right)\)

^^