Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x+1}=1-\frac{1}{y+1}+1-\frac{1}{z+1}=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
Tương tụ co:
\(\hept{\begin{cases}\frac{1}{y+1}\ge2\sqrt{\frac{zx}{\left(z+1\right)\left(x+1\right)}}\\\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\end{cases}}\)
\(\Rightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\Leftrightarrow xyz\le\frac{1}{8}\)
Từ giả thiết:\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)\(\Rightarrow ab+bc+ca=1\)
Ta có:\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)\(=\sqrt{\frac{1}{1+x^2}}+\sqrt{\frac{1}{1+y^2}}+\sqrt{\frac{1}{1+z^2}}\)
\(=\sqrt{\frac{\frac{1}{x}}{\frac{1}{x}+x}}+\sqrt{\frac{\frac{1}{y}}{\frac{1}{y}+y}}+\sqrt{\frac{\frac{1}{z}}{\frac{1}{z}+z}}\)\(=\sqrt{\frac{a}{a+\frac{1}{a}}}+\sqrt{\frac{b}{b+\frac{1}{b}}}+\sqrt{\frac{c}{c+\frac{1}{c}}}\)
\(=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)
Đến đây:\(\frac{a}{\sqrt{a^2+1}}=\frac{a}{\sqrt{a^2+ab+bc+ca}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(=\sqrt{\frac{a}{a+b}.\frac{a}{a+c}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
Tương tự:\(\frac{b}{\sqrt{b^2+1}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right);\frac{c}{\sqrt{c^2+1}}\le\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\)
Cộng 3 bất đẳng thức lại ta có điều phải chứng minh :))
Ta có : \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\Leftrightarrow\frac{1}{x+1}=\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\Leftrightarrow\frac{1}{x+1}=\frac{y}{y+1}+\frac{z}{z+1}\)
Tương tự ta cũng có : \(\frac{1}{y+1}=\frac{z}{z+1}+\frac{x}{x+1}\) ; \(\frac{1}{z+1}=\frac{y}{y+1}+\frac{x}{x+1}\)
Áp dụng bất đẳng thức Cosi: \(\frac{1}{x+1}=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
\(\frac{1}{y+1}\ge2\sqrt{\frac{xz}{\left(x+1\right)\left(z+1\right)}}\) ; \(\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\left(3\right)\)
Nhân (1) , (2) , (3) theo vế được :\(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}.\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}.\sqrt{\frac{xz}{\left(x+1\right)\left(z+1\right)}}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\Rightarrow8xyz\le1\Leftrightarrow xyz\le\frac{1}{8}\)(đpcm)
Ta có
\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
\(=>x^2y^2+y^2z^2+z^2x^2+2\left(xyz\right)\left(x+y+z\right)\ge3xyz\left(x+y+z\right)\)
\(=>\left(xy+yz+zx\right)^2\ge3\left(x+y+z\right)\)
\(=>\frac{1}{\left(x+y+z\right)}\ge\frac{3}{\left(xy+yz+zx\right)^2}\)
\(=>A\ge\frac{3}{\left(xy+yz+zx\right)^2}-\frac{2}{xy+yz+zx}\)
đặt
\(\frac{1}{xy+yz+zx}=t\)
\(=>A\ge3t^2-2t\)
mà \(\left(3t-1\right)^2\ge0=>9t^2-6t+1\ge0=>3t^2-2t+\frac{1}{3}\ge0\Rightarrow3t^2-2t\ge-\frac{1}{3}\)
\(=>A\ge-\frac{1}{3}\)(dpcm)
Dấu = xảy ra khi x=y=z=1
tinh tuoi con gai bang 1/4 tuoi me , tuoi con bang 1/5 tuoi me . tuoi con gai cong voi tuoi cua con trai
la 18 tuoi . hoi me bao nhieu tuoi ?
\(\frac{x}{x+2}+\frac{y}{y+2}=2-2\left(\frac{1}{x+2}+\frac{1}{y+2}\right)\le2-2.\frac{4}{x+2+y+2}=2-\frac{8}{4-z}\)
Cần CM: \(2-\frac{8}{4-z}+\frac{z}{z+8}\le\frac{1}{3}\)
\(\Leftrightarrow\frac{8\left(z-2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\)
bđt trên đúng do \(4-z=\left(x+2\right)+\left(y+2\right)>0\)
Từ (gt) \(\Rightarrow\frac{1}{1+x}=\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
Tương tự \(\hept{\begin{cases}\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\\\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\end{cases}}\)
\(\Rightarrow\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\frac{\left(xyz\right)^2}{\left[\left(1+x\right)\left(1+y\right)\left(1+z\right)\right]^2}}=\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow xyz\le\frac{1}{8}\)
Theo BĐT Cauchy cho 2 số dương, ta có:
\(2x^2+y^2+5=\left(x^2+y^2\right)+\left(x^2+1\right)+4\ge2\left(xy+x+2\right)\)
\(\Rightarrow\frac{x}{2x^2+y^2+5}\le\frac{x}{2\left(xy+x+2\right)}\)(1)
Tương tự ta có: \(\frac{2y}{6y^2+z^2+6}\le\frac{2y}{4\left(yz+y+1\right)}=\frac{y}{2\left(yz+y+1\right)}\)(2)
\(\frac{4z}{3z^2+4x^2+16}\le\frac{4z}{4\left(zx+2z+2\right)}=\frac{z}{zx+2z+2}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{x}{2x^2+y^2+5}+\frac{2y}{6y^2+z^2+6}+\frac{4z}{3z^2+4x^2+16}\)
\(\le\frac{1}{2}\left(\frac{x}{xy+x+2}+\frac{y}{yz+y+1}+\frac{2z}{zx+2z+2}\right)\)
\(=\frac{1}{2}\left(\frac{zx}{xyz+xz+2z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{2z}{zx+2z+2}\right)\)
\(=\frac{1}{2}\left(\frac{zx}{2+xz+2z}+\frac{2}{2z+2+xz}+\frac{2z}{zx+2z+2}\right)\)(Do xyz = 2)
\(=\frac{1}{2}.\frac{zx+2z+2}{zx+2z+2}=\frac{1}{2}\)
Đẳng thức xảy ra khi x = y = 1; z = 2
\(\frac{1}{x+1}=\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\) (1)
Tương tự :
\(\frac{1}{y+1}\ge2\sqrt{\frac{xz}{\left(x+1\right)\left(z+1\right)}}\) (2)
\(\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\) (3)
từ (1) (2) và (3) => \(\frac{1}{x+1}\cdot\frac{1}{y+1}\cdot\frac{1}{z+1}\ge8\sqrt{\frac{x^2y^2z^2}{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)
=> \(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8\cdot\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
=> \(1\ge8xyz\)
=> \(xyz\le\frac{1}{8}\)
Dấu '=' xảy ra khi x = y = z = 1/2