Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy :
\(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^2}{2x}+\frac{x+z}{4}\ge3\sqrt[3]{\frac{x^4\cdot y^2\cdot\left(x+z\right)}{y^2\cdot\left(x+z\right)\cdot2x\cdot4}}=3\sqrt[3]{\frac{x^3}{8}}=\frac{3x}{2}\)
Tương tự ta cũng có :
\(\frac{y^4}{z^2\left(x+y\right)}+\frac{z^2}{2y}+\frac{x+y}{4}\ge\frac{3y}{2}\)
\(\frac{z^4}{x^2\left(y+z\right)}+\frac{x^2}{2z}+\frac{y+z}{4}\ge\frac{3z}{2}\)
Cộng theo vế ta được :
\(VT+\left(\frac{y^2}{2x}+\frac{z^2}{2y}+\frac{x^2}{2z}\right)+\frac{2\left(x+y+z\right)}{4}\ge\frac{3x}{2}+\frac{3y}{2}+\frac{3z}{2}\)
\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{y^2}{x}+\frac{z^2}{y}+\frac{x^2}{z}\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT+\frac{1}{2}\cdot\frac{\left(x+y+z\right)^2}{x+y+z}+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT+\frac{1}{2}\left(x+y+z\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow VT\ge\frac{x+y+z}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)
\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)
\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)
Điều kiện là các số dương
\(VT=\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)
\(VT\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(VT\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\ge\frac{8}{9}\left(x+y+z\right).3\sqrt[3]{x^2y^2z^2}=VP\)
Dấu "=" xảy ra khi \(x=y=z\)
BĐT tương đương với:
\(x+y+z+xy+yz+zx+1\ge3xyz\)
hay : \(7+z\left(6-z\right)+xy\left(1-3z\right)\ge0\)
Vì \(x\le1;y\le2\)nên \(z\ge3\), tức là \(1-3z< 0;3z-5>0\)
Áp dụng BĐT AM-GM, ta có:
\(xy=\frac{1}{2}.2x.y\le\frac{\left(2x+y\right)^2}{8}\le\frac{\left(1+x+y\right)^2}{8}=\frac{\left(7-z\right)^2}{8}\)
Do đó: \(7+z\left(6-z\right)+xy\left(1-3z\right)\ge7+z\left(6-z\right)+\frac{\left(7-z\right)^2}{8}\left(1-3z\right)\)
\(=\frac{1}{8}\left(z-3\right)\left(7-z\right)\left(3z-5\right)=\frac{1}{8}\left(z-3\right)\left(1+x+y\right)\left(3z-5\right)\ge0\)
Đẳng thức xảy ra khi và chỉ khi x=1,y=2,z=3
\(VP=\left(2-x\right)\left(2-z\right)\left(2-y\right)=\left(y+z\right)\left(x+y\right)\left(2-y\right)\le\frac{\left(x+2y+z\right)^2}{4}\left(2-y\right)\)
\(VP\le\left(x+2y+z\right).\frac{\left(x+2y+z\right)\left(2-y\right)}{4}\le\left(x+2y+z\right)\frac{\left(x+y+z+2\right)^2}{16}=x+2y+z\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=z=1\\y=0\end{matrix}\right.\)