K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

a, x^4 - 5x^2 + 4

= x^4 - 4x^2- x+ 4

= x^2  . (x^2 - 4) - (x^2 - 4)

= (x^2 - 4) . (x^2 - 1)

= (x - 2) . (x + 2) . (x - 1) . (x + 1)

17 tháng 11 2022

Sửa đề: xy(x+y)+yz(y+z)+xz(x+z)+2xyz=0

=>x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz=0

=>(x+y)(y+z)(x+z)=0

A=(x^3+y^3)(y^3+z^3)(x^3+z^3)

=(x+y)*B*(y+z)*C*(x+z)*D

=0

21 tháng 4 2016

x^2 + y^2 +z^2 =xy+yz+zx 

=> x^2 + y^2 +z^2-xy-yz-zx=0

2x^2 + 2y^2 + 2z^2 - 2xy-2yz-2zx=0

(x-y)^2 + (y-z)^2 + (z-x)^2=0

=> x=y=z (x;y;z >0)

=> 3.x^2014=3.y^2014=3.z^2014=3

x^2014=y^2014=z^2014=1

x=y=z=1 

tự tính P nha

5 tháng 4 2016

Từ gt => 2(x^2+y^2+z^2)=2(xy+yz+xz)

<=> (x-y)^2 + (y-z)^2 + (z-x)^2=0

<=> x=y=z

=> 3x^2014=3

=>x=y=z=1

=>P= 1^25+1^4+1^2015 = 3

15 tháng 12 2019

\(x^{2019}+y^{2019}+z^{2019}=\left(x+y+z\right)^{2019}\)

Em xin lỗi, đây mới là đề đúng ạ !!

25 tháng 2 2018

x+y+z=0;xy+yz+xz=0

⇒(x+y+z)2=x2+y2+z2+2(xy+yz+xz)=0

⇒(x+y+z)2=x2+y2+z2=0

⇒x=y=z=0

⇒S=(x−1)2005+(y−1)2006+(z+1)2007=(−1)2005+(−1)2006+12007=1

24 tháng 5 2017

lười thế bạn nhân phá ra là được mà

24 tháng 5 2017

a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Biến đổi vế trái ta được :

\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)

\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)

\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

28 tháng 9 2016

Bài 1 :

a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

28 tháng 9 2016

Đã có kết quả

Bài 1,chữa phần a

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz

=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)

=xy(x+y+z)+yz(x+y+z)+xz(x+z)

=y(x+y+z)(x+z)+xz(x+z)

=(x+z)(xy+y2+yz+xz)

=(x+z)(x+y)(y+z)

Chữa phần b

x3-x+3x2y+3xy2+y3-y

=(x+y)(x+y-1)(x+y+1)

Bài2

a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc

Ai làm đúng như này ớ sẽ k

19 tháng 6 2015

\(0=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2+0\)

\(\Rightarrow x^2+y^2+z^2=0\)

\(\Rightarrow x=y=z=0\)

\(P=\left(-1\right)^{2003}+0^{2004}+1^{2005}=0\)