K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

a) xy = b \(\Rightarrow\)2xy = 2b ; x + y = a \(\Rightarrow\)( x + y )2 = a2 \(\Rightarrow\)x2 + y2 + 2xy = a2 \(\Rightarrow\)x2 + y2 = a2 - 2b

b) x3 + y3 = ( x + y ) . ( x2 - xy + y2 ) = a . ( a2 - 2b - b ) = a . ( a2 - 3b ) = a3 - 3ab

24 tháng 6 2015

a)a+b+c=9

=>(a+b+c)2=81

=>a2+b2+c2+2ab+2bc+2ca=81

Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60

=>2(ab+bc+ca)=-60=>ab+bc+ca=-30

b)x+y=1

=>(x+y)3=1

=>x3+3x2y+3xy2+y3=1

=>x3+y3+3xy(x+y)=1

=>x3+y3+3xy=1(Do x+y=1)

c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)

=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0

d)đang tìm hướng giải

3 tháng 7 2017

cho mk sửa lại đề chút nhoa:

b, Cho x+y=a và x2+y2=b. Tính x3+y3 theo a và b

3 tháng 7 2017

a.Từ \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\)

\(\Rightarrow10+2xy=4\Rightarrow xy=-3\)

Ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.\left[\left(x+y\right)^2-2xy-xy\right]\)

=\(2.\left[2^2-3.xy\right]=2.\left[4-3.\left(-3\right)\right]=26\)

b.Từ \(x-y=a\Rightarrow\left(x-y\right)^2=a^2\Rightarrow x^2-2xy+y^2=a^2\)

\(\Rightarrow b-2xy=a^2\Rightarrow xy=\frac{b-a^2}{2}\)

Ta có \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=a.\left[\left(x-y\right)^2+3xy\right]\)

\(=a.\left[a^2+3.\frac{b-a^2}{2}\right]=a.\frac{2a^2+3b-3a^2}{2}=\frac{-a^3+3ab}{2}\)

7 tháng 7 2019

a) Ta có:

x + y = 3

=> ( x + y)2 = 9

=> x2 + 2xy + y2 = 9

=> 10 + 2xy = 9

=> 2xy = 9 - 10 = -1

=> xy = -1/2 

Ta có:

 x3 + y3 = (x + y)(x2 - xy + y2)

 = 3.(10 + 1/2) = 63/2

b) Ta có: x + y = a

=> (x + y)2 = a2

=> x2 + 2xy + y2 = a2

=> b + 2xy = a2

=> xy = (a2 - b)/2

Ta có:  x3 + y3 = (x + y)(x2 + xy + y2)

 = a[b + (a2 - b )/2] = ab + (a3 - b)/2.

7 tháng 7 2019

Làm b) công thức tổng quát luôn

x+y=a => (x+y)^2 =a^2 => x^2+y^2+2xy=a^2

Thay x^2+y^2=b  vào ta được:

b+2xy=a^2 => xy=(a^2-b)/2 

TA có x^3+y^3 =(x+y)(x^2+y^2 -xy)= a [b+(a^2-b)/2] =ab +(a^3-ab)/2=ab/2+a^3/2

24 tháng 6 2015

ĐÂY NÀY:

( x +y) ^2 = a^2 => x^2 + 2xy + y^2 = a^2 

=> 2xy = a^2 - ( x^2  + y^2) = a^2 -b

=> xy = a^2-b/2

Ta có E = x^3 + y^3 = ( x+ y)(  x^2 - xy + y^2)

 E = a ( b - a^2-b/2)

8 tháng 4 2018

cũng bằng 3

12 tháng 3 2023

Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z

=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)

=�+��+1��+�+1=xy+x+1x+xy+1

=1=1

 

 

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

a)

$A=B\Leftrightarrow (x-3)(x+4)-2(3x-2)=(x-4)^2$

$\Leftrightarrow x^2+x-12-6x+4=x^2-8x+16$

$\Leftrightarrow 3x=24\Leftrightarrow x=8$

b)

$A=B\Leftrightarrow (x+2)(x-2)+3x^2=(2x+1)^2+2x$

$\Leftrightarrow x^2-4+3x=4x^2+6x+1$

$\Leftrightarrow 3x^2+3x+5=0$

$\Leftrightarrow 3(x+\frac{1}{2})^2=\frac{-17}{4}< 0$ (vô lý)

Do đó k có giá trị nào của $x$ để $A=B$

c)

$A=B\Leftrightarrow (x-1)(x^2+x+1)-2x=x(x-1)(x+1)$

$\Leftrightarrow x^3-1-2x=x(x^2-1)=x^3-x$

$\Leftrightarrow x=-1$

d)

$A=B\Leftrightarrow (x+1)^3-(x-2)^3=(3x-1)(3x+1)$

$\Leftrightarrow [(x+1)-(x-2)][(x+1)^2+(x+1)(x-2)+(x-2)^2]=9x^2-1$

$\Leftrightarrow 3(x^2+2x+1+x^2-x-2+x^2-4x+4)=9x^2-1$

$\Leftrightarrow 3(3x^2-3x+3)=9x^2-1$

$\Leftrightarrow -9x=-10\Leftrightarrow x=\frac{10}{9}$

AH
Akai Haruma
Giáo viên
23 tháng 3 2020

$(x+1)^3-(x-2)^3=(3x-1)(3x+1)$

13 tháng 1 2015

1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)

b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)