Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\left(x-y\right)^2=x^2-2xy+y^2=\left(x^2+2xy+y^2\right)-4xy\)
\(=\left(x+y\right)^2-4xy=9^2-4.14=25\)
Vậy nên \(\orbr{\begin{cases}x-y=5\\x-y=-5\end{cases}}\)
b) \(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy\)
\(=9^2-2.14=53\)
c) \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
\(=9.\left(9^2-3.14\right)=351\)
Đề như này thì bạn phải thêm y^3 vào mới tính được giá trị biểu thức.
Mình thêm y^3 theo ý mình. Bạn xem thử nhé!
\(R=\left(8x^3+12x^2y+6xy^2+y^3\right)+3\left(4x^2+4xy+y^2\right)y+3\left(2x+y\right)y^2+y^3\)
= \(\left(2x+y\right)^3+3\left(2x+y\right)^2y+3\left(2x+y\right)y^2+y^3\)
= \(\left(2x+y+y\right)^3=8\left(x+y\right)^3=8.50^3=...\)
\(P=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
\(=2\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
\(=2\left(x^2+y^2\right)-3\left(x^2+y^2\right)-2xy\)
\(=-x^2-2xy-y^2\)
\(=-\left(x^2+2xy+y^2\right)\)
\(=-\left(x+y\right)^2\)
\(=-1\)
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg
cứu mình đi mấy bạn ,mai nộp rồi
sống trong đời sống cần có 1 tấm lòng