K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

bài của   Never_NNL   sai nhé:

  \(x+y=m+n\)   \(\Rightarrow\)\(n=x+y-m\)

Ta có:    \(A=x^2+y^2+m^2+n^2\)

\(=x^2+y^2+m^2+\left(x+y-m\right)^2\)

\(=2x^2+2y^2+2m^2+2xy-2mx-2my\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2mx+m^2\right)+\left(y^2-2my+m^2\right)\)

\(=\left(x+y\right)^2+\left(x-m\right)^2+\left(y-m\right)^2\)

Vậy A là tổng của 3 số chính phương

21 tháng 7 2018

x + y = m + n

m = x + y - n

x^2 + y^2 + ( x + y - n )^2 + n^2 

= x^2 + y^2 + ( x^2 + xy- xn ) + ( xy + y^2 - ny ) - [ ( - xn ) + ( - ny ) + n^2 ] + n^2 

= x^2 + y^2 + x^2 + xy - xn + xy + y^2 - ny + xn + ny - n^2 + n^2 

= 2x^2 + 2y^2 + 2xy 

= x^2 + y^2 + ( x^2 + y^2 + 2xy )

= x^2 + y^2 + ( x + y )^2 ( dpcm )

15 tháng 8 2020

đặt \(A=x^2+y^2+2x\left(y-1\right)+2y=x^2+y^2+2xy-2x+2y=\left(x+y\right)^2-2\left(x-y\right)\)

do A là số chính phương => \(\left(x+y\right)^2-2\left(x+y\right)\)cũng là số chính phương

\(\Leftrightarrow-2\left(x-y\right)=0\)

\(\Leftrightarrow x=y\)

11 tháng 12 2022

Ta có: x2+y2+2xy-4x-2y+1=0

      ⇔(x2+y2+2xy-2x-2y+1)-2x=0

      ⇔(x+y-1)2=2x

Mà (x+y-1)2 là số chính phương

⇒2x là số chính phương

⇒2x chia 4 dư 0 hoặc 1

Mà 2x là số chẵn 

⇒2x chia hết cho 4

⇒x chia hết cho 2

⇒x là số chẵn(đpcm)

Lại có:(x+y-1)2=2x

\(\dfrac{\left(x+y-1\right)^2}{2}\)=x

\(\dfrac{\left(x+y-1\right)^2}{2}\): 2=x:2

\(\dfrac{\left(x+y-1\right)^2}{2}\)\(\dfrac{1}{2}\) =x:2

\(\dfrac{\left(x+y-1\right)^2}{4}\)=x:2

⇒(\(\dfrac{x+y-1}{2}\))2=x:2  

Mà \(\left(\dfrac{x+y-1}{2}\right)^2\) là số chính phương

⇒x:2 là số chính phương (đpcm)

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

25 tháng 8 2023

Xét \(P=x^2+y^2+2x\left(y-1\right)+2y+1\) 

\(P=x^2+y^2+2xy-2x+2y+1\)

+) Nếu \(y>x\) thì \(2y-2x+1>0\). Do đó \(P>\left(x+y\right)^2\). Hơn nữa:

\(P< x^2+y^2+1+2xy+2x+2y\) \(=\left(x+y+1\right)^2\)

suy ra \(\left(x+y\right)^2< P< \left(x+y+1\right)^2\), vô lí vì P là SCP.

+) Nếu \(x>y\) thì \(2y-2x+1< 0\) nên \(P< \left(x+y\right)^2\)

Hơn nữa \(P>x^2+y^2+1+2xy-2x-2y\) \(=\left(x+y-1\right)^2\)

Suy ra \(\left(x+y-1\right)^2< P< \left(x+y\right)^2\), vô lí vì P là SCP.

Vậy \(x=y\) (đpcm)

(Cơ mà nếu thay \(x=y\) vào P thì \(P=4x^2+1\) lại không phải là SCP đâu)