K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

Từ x+y=1 (GT)

=>(x+y)3=13=1

=>x3+3x2y+3xy2+y3=1 (HĐT)

=>x3+y3+3xy(x+y)=1

=>x3+y3+3xy*1=1

=>x3+y3+3xy=1

13 tháng 6 2016
từ x+y=1=>x=1-y thay vào biểu thức trên ta được: (1-y)^3+3(1-y)y+y^3=1-3y+3y^2-y^3+3y-3y^2+y^3=1
11 tháng 8 2017

X+ Y= X3 + 3X2Y + 3 XY2+ Y2+ 3XY - 3 X2Y- 3XY2

=(x + y ) + 3xy. ( 1 - x - y )

=( x + y)3 + 3xy . [ 1 - (x - y) ]

= 13 + 3xy. ( 1-1)

=1

mik cũng ko chắc nữa nhé

11 tháng 8 2017

Ta có :x3 +y3 +3xy=(x+y)(x2 -xy+y2)+3xy

mà x+y=1

=>x2 -xy+y2+3xy=x+2xy+y2 =(x+y)2=12 =1

10 tháng 11 2017

Ta có: x2+y=y2+x

=>x2+y-y2+x=0

=>(x2-y2)-(x-y)=0

=>(x-y)(x+y)-(x-y)=0

=>(x-y)(x+y-1)=0

=>x-y=0 hoặc x+y-1=0

=>x+y=1(TH1 loại do x khác y)

ta có:A=x3+y3+3xy(x2+y2)+6x2y2(x+y)

=>A=(x+y)(x2-xy+y2)+3x3y+3xy3+6x2y2

=>A=x2-xy+y2+3x3y+3xy3+6x2y2

=>A=(x+y)2-3xy+3x2y(x+y)+3xy2(x+y)

=>A=1-3xy+3x2y+3xy2

=>A=1+3xy(-1+a+b)

=>A=1+3xy(-1+1)

=>A=1+3xy.0

=>A=1

Vậy A=1 khi x2+y=y2+x và x khác y.

4 tháng 11 2019

Lê Đức Huy chép sai đề cau đầu kìa!

6 tháng 8 2015

x3+y3=x3+3x2y+3xy2+y2+3xy-3x2y-3xy2

=(x+y)3+3xy.(1-x-y)

=(x+y)3+3xy.[1-(x+y)]

=13+3xy.(1-1)

=1

11 tháng 7 2017

13 - 3xy . (1-1) = 1 

>_< chúc bn học tốt

17 tháng 8 2017

a) Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Vậy nên \(a^3+b^3+c^3+6=0.\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow a^3+b^3+c^3=-6.\)

b) \(x^3+y^3+3xy=x^3+3xy\left(x+y\right)+y^3=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1.\)

c) \(x^3-y^3-3xy=x^3-3xy\left(x-y\right)-y^3=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1.\)

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

15 tháng 7 2016

 \(P=x^3+3xy+y^3=x^3+3xy\left(x+y\right)+y^3=\left(x+y\right)^3=1^3=1\)

8 tháng 8 2015

x2-y=y2-x

<=>(x2-y2)+(x-y)=0

<=>(x-y)(x+y)+(x-y)=0

<=>(x-y)(x+y+1)=0

*)Nếu x-y=0<=>x=y

Tính a theo x ta có

A=x3+x3+3x2(x2+x2)+6x4(x+x)

=2x3+6x4+12x5

*)Nếu x+y+1=0

<=>x=-(y+1)

Tính A theo y ta có

A=(-y-1)3+y3+3(y-1)y[(-y-1)2+y2]+6(-y-1)2y2(-y-1+y)

cái này bạn tự tính

22 tháng 7 2018

Dễ mà bạn !

12 tháng 7 2024

12 tháng 7 2024

b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\)

    1 = \(x^3\) - y3 - 3\(xy\)