Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra
bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1
Áp dụng bđt AM-GM , ta có P >/ 4 =>minP=4
đẳng thức xảy ra khi đồng thời x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé
https://olm.vn/hoi-dap/detail/83670859470.html
https://olm.vn/hoi-dap/detail/83670859470.html
https://olm.vn/hoi-dap/detail/83670859470.html
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
Ta có:
x+y=1
=> x=1-y
Thay vào phương trình
\(\Rightarrow5\left(1-y\right)^2+y^2=5\left(1-2y+y^2\right)+y^2=5-10y+5y^2+y^2=6y^2-10y+5\)
\(=6\left(y^2-\frac{5}{3}x+\frac{5}{6}\right)=6\left(y^2-2.\frac{5}{6}x+\frac{25}{36}+\frac{5}{36}\right)=6\left[\left(y-\frac{5}{6}\right)^2+\frac{5}{36}\right]\)
\(=6\left(y-\frac{5}{6}\right)^2+\frac{5}{6}\ge\frac{5}{6}\Leftrightarrow Min=\frac{5}{6}\Leftrightarrow y=\frac{5}{6}\)
nha ( 1 cái T I C K) nha
CHÚC BẠN HỌC TỐT
x+y=1 => x=y-1
Ta có: 5x^2+y^2=5(1-y)^2+y^2
= 5(1-2y+y^2)+y^2
=5-10y+5y^2+y^2
=6y^2-10y+5=6(y^2- 5y/3+25/36)+5/6
= 6(y-5/6)^2+5/6
Vì 6(y-5/6)^2 >=0 với mọi y
Nên 6(y-5/6)^2 +5/6 >= 5/6(dấu "=" xảy ra <=> y=5/6 và x=1/6)
=> GTNN của 5x^2+y^2 là 5/6
\(x^2+\left(s-3x\right)^2-5x-15\left(s-3x\right)+8\le0\)
\(S=3x+y\Leftrightarrow y=S-3x\)
\(10x^2-2\left(3x-20\right)x+s^2-15s+8\le0\left(1\right)\)
Tìm đk S để có BPT (1) có nghiệm
Ta có:
\(\left(3s-20\right)^2-10s^2+150s-80\ge0\)
\(s^2-30s-320\le0\)
\(15-\sqrt{545}\le s\le15+\sqrt{545}\)
Vậy MinS = \(15-\sqrt{545}\)