K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 2 2019

Do \(4x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=\dfrac{sina}{2}\\y=cosa\end{matrix}\right.\)

\(\Rightarrow M=\dfrac{sina+3cosa}{sina+cosa+2}\Leftrightarrow M.sina+M.cosa+2M=sina+3cosa\)

\(\Leftrightarrow\left(M-1\right)sina+\left(M-3\right)cosa=-2M\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(M-1\right)^2+\left(M-3\right)^2\ge\left(-2M\right)^2\)

\(\Leftrightarrow2M^2+8M-10\le0\)

\(\Leftrightarrow-5\le M\le1\)

\(\Rightarrow\left\{{}\begin{matrix}M_{min}=-5\\M_{max}=1\end{matrix}\right.\)

25 tháng 10 2015

A = \(\frac{2x+3y}{2x+y+2}\) 

<=> A(2x + y + 2) = 2x + 3y 

<=> 2x.A + y.A + 2.A = 2x + 3y

<=> 2x(1 - A) + (3 - A).y = 2.A

Áp dụng BĐT Bunhia côp xki ta có: [2x.(1 - A) + ( 3 - A).y]< (4x+ y2) .[(1 - A)+ (3 - A)2

=> (2.A)< 2A2 -8A + 10

<=> - 2A- 8A  + 10 > 0

<=> A+ 4A - 5 <

<=> (A - 1).(A + 5) < 0 <=> -5 < A < 1

Vậy Min A = -5 . giải hệ -5 = \(\frac{2x+3y}{2x+y+2}\); 4x2 + y= 1 => x ; y

Max A = 1 tại....

 

 

7 tháng 6 2019

Ta có x,y,z là các số thực dương 

Khi đó : \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0.\)

\(\Leftrightarrow5\frac{x^2}{\left(y+z\right)^2}+\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}-\frac{9x}{y+z}-\frac{18yz}{\left(y+z\right)^2}=0\)

\(\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-\frac{9x}{y+z}=\frac{18yz}{\left(y+z\right)^2}-\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}\)

                                                \(\le\frac{\frac{18\left(y+z\right)^2}{4}}{\left(y+z\right)^2}-\frac{\frac{5\left(y+z\right)^2}{2}}{\left(y+z\right)^2}=\frac{18}{4}-\frac{5}{2}=2.\)

\(\Rightarrow5\left(\frac{x}{y+z}\right)^2-9.\frac{x}{y+z}\le2.\)

Đặt \(\frac{x}{y+z}=a>0\)ta được \(5a^2-9a-2\le0\)

\(\Leftrightarrow5a^2-10a+a-2\le0\Leftrightarrow\left(5a+1\right)\left(a-2\right)\le0\)

Dễ thấy  \(5a+1>0\)\(\Rightarrow a-2\le0\Leftrightarrow a\le2\Leftrightarrow\frac{x}{y+z}\le2.\)

Ta có: \(Q=\frac{2x-y-z}{y+z}=\frac{2x}{y+z}-1\le2.2-1=3\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}y=z\\\frac{x}{y+z}=2\end{cases}\Leftrightarrow x=4y=4z}\)

Vậy Giá trị lớn nhất của \(Q=3\Leftrightarrow x=4y=4z.\)