Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt \(\Leftrightarrow\)\(x^4+2x^2y^2+y^4=2y^2-x^2+3\)
\(\Leftrightarrow\)\(\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1=-3x^2+4\)
\(\Leftrightarrow\)\(\left(x^2+y^2-1\right)^2=-3x^2+4\le4\)
\(\Rightarrow\)\(-1\le x^2+y^2\le3\)
Ta có: \(2\left(x^2+y^2\right)=1+xy\)
\(\Leftrightarrow x^2+y^2=\frac{1+xy}{2}\)
\(P=7\left(x^4+y^4\right)+4x^2y^2\)
\(=7x^4+7y^4+4x^2y^2\)
\(\Rightarrow P=28x^3+28y^3+16xy\)
\(\Leftrightarrow P=0\Leftrightarrow28x^3+28y^3+16xy=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=4\end{cases}}\)
\(\Rightarrow P_{Min}=15\) và \(Max_P=\frac{12}{33}\)
Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)
Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)
Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)
Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)
Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))
\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)
\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2
Lời giải:
Không mất tính tổng quát. Giả sử \(x\geq y\Rightarrow 2x\geq 2017\Rightarrow x\geq 1009\) (do \(x\) nguyên dương)
Thực hiện biến đổi P
\(P=x(x^2+y)+y(y^2+x)=(x^3+y^3)+2xy\)
\(\Leftrightarrow P=(x+y)(x^2-xy+y^2)+2xy\)
\(\Leftrightarrow P=2017(x^2-xy+y^2)+2xy=2017(x+y)^2-6049xy\)
\(\Leftrightarrow P=2017^3-6049xy=2017^3-6049x(2017-x)\)
\(\Leftrightarrow P=6049x^2-6049.2017xy+2017^3\)
Tìm max:
Tiếp tục biến đổi :\(P=6049(x-1)(x-2016)+2017^3-2016.6049\)
Vì \(x\) nguyên dương \(\Rightarrow x\geq 1\)
\(y\geq 1\Rightarrow x=2017-y\leq 2016\)
Do đó \((x-1)(x-2016)\leq 0\Rightarrow P\leq 2017^3-2016.6049\)
Vậy \((Max) P=2017^3-2016.6049\Leftrightarrow (x,y)=(2016,1)\) và hoán vị
Tìm min:
Biến đổi \(P=6049(x-1008)(x-1009)+2017^3-1008.1009.6049\)
Vì \(x\geq 1009\Rightarrow (x-1008)(x-1009)\geq 0\), do đó \(P\geq 2017^3-1008.1009.6049\)
Vậy \((Min)P=2017^3-6049.1008.1009\Leftrightarrow (x,y)=(1009,1008)\) và hoán vị.
Từ đề bài \(\Rightarrow4x^2+4y^2+4xy-24x-24y+44=0\)
\(\Leftrightarrow\left(2x+y\right)^2-24x-12y+36+3y^2-12y+12-4=0\)
\(\Leftrightarrow\left(2x+y-6\right)^2+3\left(y-2\right)^2-4=0\)
\(\Leftrightarrow\left(2x+y-6\right)^2=4-3\left(y-2\right)^2\le4\forall x;y\)
\(\Leftrightarrow-2\le2x+y-6\le2\Rightarrow4\le2x+y\le8\)
Do đó \(4\le P\le8\)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
\(x^4+2x^2y^2-3x^2+y^4-4y^2+3=0\)
\(\Leftrightarrow x^4+y^4+4+2x^2y^2-4x^2-4y^2+x^2-1=0\)
\(\Leftrightarrow\left(x^2+y^2-2\right)^2=1-x^2\)
Mà \(1-x^2\le1\) \(\Rightarrow\left(x^2+y^2-2\right)^2\le1\)
\(\Rightarrow-1\le x^2+y^2-2\le1\) \(\Leftrightarrow1\le x^2+y^2\le3\)
\(\Rightarrow M_{min}=1\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)
\(M_{max}=3\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm\sqrt{3}\end{matrix}\right.\)
Nguyễn Việt Lâm làm đúng rồi nên không làm lại bạn nhé!