\(x^3+y^3+x^2y+y^2x-2x^2-2y^2+x+y-2=0\)

Tìm Min Max cu...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 2 2020

\(P\ge\frac{\left(x+y\right)^2}{2\left(2x^2+1\right)\left(2y^2+1\right)}+\frac{1}{xy}=\frac{2}{\left(2x^2+1\right)\left(2y^2+1\right)}+\frac{2}{9xy}+\frac{7}{9xy}\)

\(P\ge\frac{8}{4x^2y^2+2x^2+2y^2+4xy+5xy+1}+\frac{7}{9xy}\)

\(P\ge\frac{8}{4\left(\frac{x+y}{2}\right)^4+2\left(x+y\right)^2+\frac{5}{4}\left(x+y\right)^2+1}+\frac{28}{9\left(x+y\right)^2}=\frac{11}{9}\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Thực hiện khai triển và rút gọn ta có:

$A=3x^2y^2+2x^4+2y^4-(x^2+y^2)=\frac{3}{2}(x^2+y^2)^2+\frac{x^4+y^4}{2}-(x^2+y^2)$

Áp dụng BĐT AM-GM:

\(x^4+y^4\geq 2\sqrt{x^4y^4}=2x^2y^2\)

\(\Rightarrow 2(x^4+y^4)\geq x^4+y^4+2x^2y^2=(x^2+y^2)^2\)

\(\Rightarrow x^4+y^4\geq \frac{(x^2+y^2)^2}{2}\)

\(\Rightarrow A\geq \frac{3}{2}(x^2+y^2)^2+\frac{(x^2+y^2)^2}{4}-(x^2+y^2)\)

Đặt $x^2+y^2=t$

Ta có: $t=x^2+y^2=\frac{1}{2}(x+y)^2+\frac{1}{2}(x-y)^2\geq \frac{(x+y)^2}{2}\geq \frac{1}{2}$ do $x+y\geq 1$

Do đó: \(A\geq \frac{3}{2}t^2+\frac{t^2}{4}-t=\frac{7}{4}t^2-t=(t-\frac{1}{2})(\frac{7}{4}t-\frac{1}{8})-\frac{1}{16}\geq \frac{-1}{16}\) với mọi $t\geq \frac{1}{2}$

Vậy $A_{\min}=\frac{-1}{16}$

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$

19 tháng 6 2016

ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiucche

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

24 tháng 6 2019

1,\(\left\{{}\begin{matrix}x=y^2-1\\\sqrt{y^2+3}+y^2-1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1\\\sqrt{y^2+3}+y^2+3-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1\\\left(\sqrt{y^2+3}-2\right)\left(\sqrt{y^2+3}+3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1=0\\y^2=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)

3 tháng 7 2016

Tổng hợp hệ pt

21 tháng 6 2019

\(\left\{{}\begin{matrix}x^3=5x+y\\y^3=5y+x\end{matrix}\right.\)\(\Rightarrow x^3+y^3-6x-6y=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2-xy\right)-6\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2-xy-6\right)=0\)

TH1: x + y = 0 \(\Rightarrow x=-y\)

hpt\(\Leftrightarrow\left\{{}\begin{matrix}-y^3=-5y+y\\y^3=5y+x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y\left(y^2-4\right)=0\\y^3=5y+x\end{matrix}\right.\)

Th2:\(\left(x^2+y^2-xy-6\right)=0\)

Thay \(y=x^3-5x\)rồi giải nha

@.@