K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\)

\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\)

\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)

 Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

  \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}\)

Do x, y, z \(\ne\)\(\Rightarrow\frac{x+y+z}{y+z+x}=1\)

                          \(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\\\frac{y}{z}=1\\\frac{z}{x}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)

\(\Rightarrow\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(3x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{3^{999}.x^{999}}{x^{999}}=3^{999}\)

Vậy.............

21 tháng 10 2018

Giả sử một trong 3 số x, y, z bằng 0 thì ta chứng minh được hai số còn lại bằng 0 (trái với x + y + z ≠ 0)

Do đó x, y, z khác 0

Ta có: \(x^2=yz\Leftrightarrow z=\frac{x^2}{y}\left(1\right)\)

\(y^2=xz\Leftrightarrow z=\frac{y^2}{x}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x^2}{y}=\frac{y^2}{x}\Leftrightarrow x^3=y^3\Leftrightarrow x=y\)

Thay x = y vào \(x^2=yz\Rightarrow y^2=yz\Leftrightarrow y^2-yz=0\Leftrightarrow y\left(y-z\right)=0\)

=> y = 0 hoặc y - z = 0

Do y khác 0 nên y - z = 0 <=> y = z <=> x = y = z

Thay x = y = z vào A ta có:

\(A=\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(x+x+x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{\left(3x\right)^{999}}{x^{999}}=\frac{3^{999}x^{999}}{x^{999}}=3^{999}\)

25 tháng 9 2017

Nếu  một trong 3 số x, y, z bằng 0 thì từ 2 đẳng thức đầu ta cũng suy ra 2 số còn lại bằng 0, trái với giả thiết cuối x + y + z khác 0.

Vậy cả 3 số x, y, z khác 0.

Vì \(x^2=yz\) và \(y^2=xz\) nên suy ra \(z=\frac{x^2}{y}=\frac{y^2}{x}\) => \(x^3=y^3\)

Suy ra \(x=y\). Thay vào 1 trong 2 đẳng thức đầu tiên ta suy ra: \(x^2=yz=x.z\). Do x khác 0 nên suy ra \(x=z\).

Vậy ta có \(x=y=z\).

Vậy \(\frac{\left(x+y+z\right)^{999}}{x^{222}y^{333}z^{444}}=\frac{\left(3x\right)^{999}}{x^{222}x^{333}x^{444}}=3^{999}\)

12 tháng 3 2016

Ta có: x2=yz (1)

         y2=xz (2)

         z2=xy  (3)

Cộng từng vế các BĐT (1);(2);(3) ta được:

x2+y2+z2=yz+xz+xy

<=>2(x2+y2+z2)=2(yz+xz+xy) (nhân cả 2 vế cho 2)

<=>2x2+2y2+2z2=2yz+2xz+2xy

<=>(2x2+2y2+2z2)-(2yz+2xz+2xy)=0

<=>2x2+2y2+2z2-2yz-2xz-2xy=0

<=>(2x2-2xy)+(2y2-2yz)+(2z2-2xz)=0

<=>(x-y)2+(y-z)2+(z-x)2=0

\(\left(x-y\right)^2\ge0\)   với mọi x;y

\(\left(y-z\right)^2\ge0\)   với mọi y;z

\(\left(z-x\right)^2\ge0\) với mọi z;x

=>(x-y)2+(y-z)2+(z-x)2 \(\ge\) 0 với mọi x;y;z

Theo đề: (x-y)2+(y-z)2+(z-x)2=0

=>(x-y)2=(y-z)2=(z-x)2=0

<=>x-y=y-z=z-x=0

+)x-y=0=>x=y (4)

+)y-z=0=>y=z (5)

+)z-x=0=>z=x (6)

từ (4);(5);(6)=>x=y=z (ĐPCM)

12 tháng 3 2016

Ta có: x2=yz =>\(\frac{x}{y}=\frac{z}{x}\) (1)

y2=xz => \(\frac{x}{y}=\frac{y}{z}\) (2)

Từ (1);(2) =>\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)

Do đó, x=y*1=y

          z=x*1=x

=>x=y=z

Vậy x=y=z

1 tháng 11 2015

\(x^2=y.z\Rightarrow\frac{x}{y}=\frac{z}{x}\)

tuong tự ta có\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)

=> dpcm

Lile nhá bạn