Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))
b \(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))
a: \(M=\dfrac{x+6\sqrt{x}-3\sqrt{x}+18-x}{x-36}\)
\(=\dfrac{3\left(\sqrt{x}+6\right)}{x-36}=\dfrac{3}{\sqrt{x}-6}\)
b: \(N=\dfrac{x^2}{y}\cdot\sqrt{xy\cdot\dfrac{y}{x}}-x^2\)
\(=\dfrac{x^2}{y}\cdot y-x^2=0\)
2b
\(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{6}x-4y=7\sqrt{2}\\\sqrt{6}x+9y=-6\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13y=13\sqrt{2}\\\sqrt{3}x-2\sqrt{2}y=7\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=-\sqrt{2}\\x=\sqrt{3}\end{matrix}\right.\)
2 a)
\(\left\{{}\begin{matrix}2x-y=3\\3x+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-7=3\end{matrix}\right.\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
a)\(VT=y^2-2y+3=\left(y-1\right)^2+2\ge2\)
\(VP=\dfrac{6}{x^2+2x+4}=\dfrac{6}{\left(x+1\right)^2+3}\le\dfrac{6}{3}=2\)
Dấu "=" xảy ra khi: \(y=1;x=-1\)
b) Áp dụng bất đẳng thức AM-GM:
\(\sqrt{x-a}\le\dfrac{x-a+1}{2}\)
\(\sqrt{y-b}\le\dfrac{y-b+1}{2}\)
\(\sqrt{z-c}\le\dfrac{z-c+1}{2}\)
Cộng theo vế:
\(VT\le\dfrac{x-a+1+y-b+1+z-c+1}{2}=\dfrac{x+y+z}{2}=VP\)
Dấu "=" xảy ra khi: \(x=y=z=2\)
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=8\Rightarrow-2\sqrt{2}\le x+y\le2\sqrt{2}\)
\(\Rightarrow VT=\sqrt{6+2\left(x+y\right)}+\sqrt{22+6\left(x+y\right)}\ge\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
\(\Rightarrow VT\ge\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=-\sqrt{2}\)
Đề bài ko đúng
cảm ơn bạn nhiều