K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

Với x = 0, ta có:

02016. f(0-2016) = (0 - 2017) . f(0)

=> 0. f(-2016) = - 2017. f(0)

=> 0 = - 2017. f(0) => f(0) = 0 (1)

Với x = 2017, ta có: 

20172016 . f(2017 - 2016) = (2017 -2017) . f(2017)

=> 20172016 . f(1) = 0. f(2017)

=>20172016 . f(1) = 0 => f(1) = 0 (2)

(1), (2) => (đpcm)

1 tháng 5 2016

1.       a^2+a+1=                a^2+1/2 a+1/2 a  +1     =a(a+1/2)+1/2(a+1/2)+1/2         =(a+1/2)^2  +1/2                           

ma (a+1/2)^2  lon hon hoac bang 0        suy  ra (a+1/2)^2+1/2  lon hon hoac bang1/2 suy ra da thuc nay khac 0

vay da thuc tren ko co nghiem

4 tháng 2 2016

 chưa hok

duyệt đi

4 tháng 2 2016

đợi năm sau em giải cho nghen! em mới lớp 6 thui à!hihi!^^

5 tháng 4 2017

a, cho f(x) = \(3^2\)-12X = 0

               => X=\(\frac{3^2-0}{12}=\frac{9}{12}=\frac{3}{4}\). Vậy X=\(\frac{3}{4}\)là nghiệm của đa thức.

b, đề chưa rõ k mình cái nha =)

5 tháng 4 2017

a, f(x)=\(3^2\) -12x=0

=>9=12x

=>x=\(\frac{3}{4}\)

b,f(1)=a+b=-2   (1)

f(2)=2a+b=0    (2)

Từ (1) và (2)

=>f(2)-f(1)=2a+b-(a+b)=a=2=0-(-2)=2

a=2

=>a+b=0

=>b=-4

24 tháng 5 2021

1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.

\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)     

\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)

\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)

\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)

\(\rightarrow\left(-1\right).f\left(3\right)=0\)

\(\rightarrow f\left(3\right)=0\)

\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)

\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)

\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0=\left(-1\right).f\left(0\right)\)

\(\rightarrow f\left(0\right)=0\)

\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)

\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)

\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0=1.f\left(2\right)\)

\(\rightarrow f\left(2\right)=0\)

\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{Vậy ...}\)