K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

Giải:

a) \(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)

\(\Leftrightarrow2\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)-3x^4-3y^4\)

\(\Leftrightarrow2\left(x^4-x^2y^2+y^4\right)-3x^4-3y^4\)

\(\Leftrightarrow2x^4-2x^2y^2+2y^4-3x^4-3y^4\)

\(\Leftrightarrow-2x^2y^2-x^4-y^4\)

\(\Leftrightarrow-\left(x^4+2x^2y^2+y^4\right)\)

\(\Leftrightarrow-\left(x^2+y^2\right)^2\)

\(\Leftrightarrow-1\)

Vậy ...

b) \(2x^4-y^4+x^2y^2+3y^2\)

\(=x^4-y^4+x^4+x^2y^2+3y^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)+x^2\left(x^2+y^2\right)+3y^2\)

\(=x^2-y^2+x^2+3y^2\)

\(=2x^2+2y^2\)

\(=2\left(x^2+y^2\right)\)

\(=2\)

Vậy ...

1 tháng 9 2017

\(\hept{\begin{cases}x^2+y^2=4-xy\\\left(x^2+y^2\right)^2-x^2y^2=8\end{cases}\Leftrightarrow\hept{\begin{cases}...\\\left(4-xy\right)^2-x^2y^2=8\Leftrightarrow xy=1.\end{cases}.}}\)

\(\hept{\begin{cases}x^2+y^2=3\\x^4+y^4=7\end{cases}}\left(xy=1\right)\Leftrightarrow7.3=\left(x^4+y^4\right)\left(x^2+y^2\right)=x^6+y^6+x^2y^2\left(x^2+y^2\right)=x^6+y^6+3.1\\ \Rightarrow x^6+y^6=7.3-3=18.\)
=> \(\Rightarrow x^6+y^6+x^2y^2=18+1=19..\)


p/s: Sai sót gì thông cảm :3

1 tháng 9 2017

À mình nhầm :v \(x^4+y^4=8+x^2y^2=9.\) Nhé :v sửa lại 9 là ok  :3

9 tháng 10 2020

Câu 1:

\(a^2+2ab+b^2-ac-bc\)

\(=\left(a+b\right)^2-c\left(a+b\right)\)

\(=\left(a+b\right)\left(a+b-c\right)\)

Câu 2:

\(5x^2-5y^2-10x+10y\)

\(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+5y-10\right)\)

\(=5\left(x-y\right)\left(x+y-2\right)\)

Câu 3:

\(3x^2-6xy+3y^2-12z^2\)

\(=3\left[\left(x-y\right)^2-4z^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

9 tháng 10 2020

Câu 4:

\(x^4+x^3+x^2-1\)

\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+x-1\right)\)

Câu 5:

\(x^3-3x^2+3x-1-y^3\)

\(=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)

\(=\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)

Câu 6:

\(x^4-x^2+2x-1\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)

Câu 7:

\(\left(x+y\right)^3-x^3-y^3\)

\(=\left(x+y\right)^3-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\)

\(=3xy\left(x+y\right)\)

NV
15 tháng 5 2019

Câu 1:

\(x+y=2\Rightarrow y=2-x\)

\(\Rightarrow A=x^2+2\left(2-x\right)^2+x-2\left(2-x\right)+1\)

\(A=x^2+2x^2-8x+8+x-4+2x+1\)

\(A=3x^2-5x+5\)

\(A=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{35}{12}\)

\(A=3\left(x-\frac{5}{6}\right)^2+\frac{35}{12}\ge\frac{35}{12}\)

\(\Rightarrow A_{min}=\frac{35}{12}\) khi \(x=\frac{5}{6}\) ; \(y=\frac{7}{6}\)

Câu 2:

\(x+2y=1\Rightarrow x=1-2y\)

\(\Rightarrow B=\left(1-2y\right)^2-5y^2+3\left(1-2y\right)-y-2\)

\(B=4y^2-4y+1-5y^2+3-6y-y-2\)

\(B=-y^2-11y+2\)

\(B=-\left(y^2+11y+\frac{121}{4}\right)+\frac{129}{4}\)

\(B=-\left(y+\frac{11}{2}\right)^2+\frac{129}{4}\le\frac{129}{4}\)

\(\Rightarrow B_{max}=\frac{129}{4}\) khi \(\left\{{}\begin{matrix}y=-\frac{11}{2}\\x=12\end{matrix}\right.\)

NV
15 tháng 5 2019

Câu 3:

Ta có:

\(x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\Rightarrow2\left|xy\right|\le4\Rightarrow\left|xy\right|\le2\Rightarrow x^2y^2\le4\)

\(D=\left(x^2\right)^3+\left(y^2\right)^3+x^4+y^4\)

\(D=\left(x^2+y^2\right)\left[\left(x^2+y^2\right)^2-3x^2y^2\right]+\left(x^2+y^2\right)^2-2x^2y^2\)

\(D=4\left(16-3x^2y^2\right)+16-2x^2y^2\)

\(D=80-14x^2y^2\ge80-14.4=24\)

\(\Rightarrow D_{min}=24\) khi \(\left\{{}\begin{matrix}x^2=2\\y^2=2\end{matrix}\right.\)

30 tháng 8 2019

\(\left(x+y\right)^2\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x^3+y^3\right)\)

\(=x^4+y^4+xy^3+x^3y=x^4+y^4+xyy^2+xyx^2=x^4+y^4+3y^2+3x^2\)