Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2,Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì x+y=90 nên:3k+6k=90
\(\Leftrightarrow\)k(3+6)=90
9k=90
k=90:9=10
Suy ra k=10\(\hept{\begin{cases}x=3.10=30\\y=6.10=60\end{cases}}\)
3,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì 4x-y=42 nên:4.3k-6k=42
\(\Leftrightarrow\) 12k-6k=42
6k=42
k=42:6=7
Suy ra k=7\(\hept{\begin{cases}x=3.7=21\\y=6.7=42\end{cases}}\)
4,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì xy=162 nên:3k.6k=162
\(\Leftrightarrow\)k2.18=162
k2=162:18
k2=9
k=\(\pm\)3
Với k=3\(\hept{\begin{cases}x=3.3=9\\y=6.3=18\end{cases}}\)
Với k=-3\(\hept{\begin{cases}x=3.\left(-3\right)=-9\\y=6.\left(-3\right)=-18\end{cases}}\)
5,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì 2x2-y2=-8 nên:2.(3k)2-(6k)2=-8
\(\Leftrightarrow\)2.9k2-36k2=-8
18k2-36k2=-8
-18k2=-8
k2=-8/-18=4/9
k=\(\pm\)\(\frac{2}{3}\)
Với k=\(\frac{2}{3}\)\(\hept{\begin{cases}x=\frac{2}{3}.3=2\\y=\frac{2}{3}.6=4\end{cases}}\)
Với k=\(\frac{-2}{3}\)\(\hept{\begin{cases}x=\frac{-2}{3}.3=-2\\y=\frac{-2}{3}.6=-4\end{cases}}\)
6,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì x-y=9 nên:3k-6k=9
\(\Leftrightarrow\) -3k=9
k=9:(-3)
k=-3
Suy ra\(\hept{\begin{cases}x=-3.3=-9\\y=-3.6=-18\end{cases}}\)
i) Ta có: \(\frac{x}{3}=\frac{y}{6}.\)
=> \(\frac{x}{3}=\frac{y}{6}\) và \(x+y=90.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}=\frac{y}{6}=\frac{x+y}{3+6}=\frac{90}{9}=10.\)
\(\left\{{}\begin{matrix}\frac{x}{3}=10\Rightarrow x=10.3=30\\\frac{y}{6}=10\Rightarrow y=10.6=60\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(30;60\right).\)
ii) Ta có: \(\frac{x}{3}=\frac{y}{6}.\)
=> \(\frac{4x}{12}=\frac{y}{6}\) và \(4x-y=42.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{4x}{12}=\frac{y}{6}=\frac{4x-y}{12-6}=\frac{42}{6}=7.\)
\(\left\{{}\begin{matrix}\frac{x}{3}=7\Rightarrow x=7.3=21\\\frac{y}{6}=7\Rightarrow y=7.6=42\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(21;42\right).\)
Chúc bạn học tốt!
Bài 1:
a) Ta có: \(2x=5y.\)
=> \(\frac{x}{y}=\frac{5}{2}\)
=> \(\frac{x}{5}=\frac{y}{2}\) và \(x.y=90.\)
Đặt \(\frac{x}{5}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)
Có: \(x.y=90\)
=> \(5k.2k=90\)
=> \(10k^2=90\)
=> \(k^2=90:10\)
=> \(k^2=9\)
=> \(k=\pm3.\)
TH1: \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.5=15\\y=3.2=6\end{matrix}\right.\)
TH2: \(k=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).5=-15\\y=\left(-3\right).2=-6\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(15;6\right),\left(-15;-6\right).\)
e) Ta có: \(\frac{x}{y}=\frac{4}{5}.\)
=> \(\frac{x}{4}=\frac{y}{5}\) và \(x.y=20.\)
Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)
Có: \(x.y=20\)
=> \(4k.5k=20\)
=> \(20k^2=20\)
=> \(k^2=20:20\)
=> \(k^2=1\)
=> \(k=\pm1.\)
TH1: \(k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.4=4\\y=1.5=5\end{matrix}\right.\)
TH2: \(k=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right).4=-4\\y=\left(-1\right).5=-5\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(4;5\right),\left(-4;-5\right).\)
Chúc bạn học tốt!
a,
xy - 2x + 5y = 12
=> x(y-2) + 5y - 10 = 2
=> x(y-2) + 5(y-2) = 2
=> (x+5)(y-2) = 2
x+5 | 1 | 2 | -1 | -2 |
y-2 | 2 | 1 | -2 | -1 |
x | -4 | -3 | -6 | -7 |
y | 4 | 3 | 0 | 1 |
Vậy (x,y) = (-4,4); (-3,3); (-6,0); (-7,1)
b,
xy = x + y
=> xy - x - y = 0
=> x(y-1) - (y-1)= 1
=> (x-1)(y-1)= 1
x-1 | 1 | -1 |
y-1 | 1 | -1 |
x | 2 | 0 |
y | 2 | 0 |
Vậy (x,y) = (2,2); (0,0)
c,
xy = x-y
=> xy - x + y = 0
=> x(y-1) + (y-1) = -1
=> (x+1)(y-1)= -1
x+1 | 1 | -1 |
y-2 | -1 | 1 |
x | 0 | -2 |
y | 1 | 3 |
=> (x,y) = ...
d,
3x+1 = (y+1)2
Ta có:
(y+1)2 chia 3 dư 0,1
Mà 3x+1 chia hết cho 3 với x khác -1
+ Với x = -1
<=> 30 = (y+1)2
<=> (y+1)2 = 1
=> \(\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)
Ta được hai cặp (x,y) = (-1;0); (-1;-2)
+ Với x khác -1
=> (y+1)2 chia hết cho 3
=> y+1 chia hết cho 3
=> y chia 3 dư 2
Vậy với x khác -1 thì giá trị ương ứng của y sẽ bằng 3k+2
Vậy...............
a/Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{x+y}{3+6}=\dfrac{90}{9}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10\cdot3=30\\y=10\cdot6=60\end{matrix}\right.\)
Vậy ...
b/Ta có:
\(\dfrac{x}{3}=\dfrac{4x}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{4x}{12}=\dfrac{y}{6}=\dfrac{4x-y}{12-6}=\dfrac{42}{6}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7\cdot3=21\\y=7\cdot6=42\end{matrix}\right.\)
Vậy ...
c/Đặt \(x=k;y=k\) ( k \(\in\) N* )
\(\Rightarrow x=3k;=6k\)
Mà \(xy=162\)
\(\Rightarrow3k\cdot6k=162\)
\(\Rightarrow18k^2=162\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot3=9\\x=\left(-3\right)\cdot3=-9\\y=3\cdot6=18\\y=\left(-3\right)\cdot6=-18\end{matrix}\right.\)
Vậy ...
#NoSimp
\(\left(2+4x\right)^2+\left(y-6\right)^2=0\)
\(\left\{{}\begin{matrix}\left(2+4x\right)^2\ge0\\\left(y-6\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(2+4x\right)^2+\left(y-6\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(2+4x\right)^2=0\Rightarrow2+4x=0\Rightarrow4x=-2\Rightarrow x=-0,5\\\left(y-6\right)^2=0\Rightarrow y-6=0\Rightarrow y=6\end{matrix}\right.\)
\(\left|8-4x\right|+\left|2x-y\right|=0\)
\(\left\{{}\begin{matrix}\left|8-4x\right|\ge0\\\left|2x-y\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|8-4x\right|+\left|2x-y\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|8-4x\right|=0\Rightarrow8-4x=0\Rightarrow4x=8\Rightarrow x=2\\2.2-y=0\Rightarrow y=4\end{matrix}\right.\)
\(\left|16+0,5x\right|+\left(y-2\right)^2=0\)
\(\left\{{}\begin{matrix}\left|16+0,5x\right|\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left|16+0,5x\right|+\left(y-2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|16+0,5x\right|=0\Rightarrow16+0,5x=0\Rightarrow0,5x=16\Rightarrow x=32\\\left(y-2\right)^2=0\Rightarrow y-2=0\Rightarrow y=2\end{matrix}\right.\)
c, Ta có: \(\frac{x}{3}=\frac{y}{6}\) và \(4x-y=42\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{6}=\frac{4x-y}{12-6}=\frac{42}{6}=7\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=7\Rightarrow x=7.3=21\\\frac{y}{6}=7\Rightarrow y=7.6=42\end{matrix}\right.\)
Vậy \(x=21\) và \(y=42\)
# Băng