K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

Theo đề ra :\(x^2+y^2=2\Leftrightarrow x^2+y^2+2xy=2+2xy\Leftrightarrow\left(x+y\right)^2=2+2xy.\)(1)

Khi đó \(\left(x+y\right)\left(x+y+2\right)=\left(x+y\right)^2+2\left(x+y\right)\)

                                                      \(=2+2xy+2\left(x+y\right)\)( Thế (1) vô)

                                                     \(=2\left(x+y+xy+1\right)\)

                                                     \(=2\left[y\left(x+1\right)+\left(x+1\right)\right]\)

                                                    \(=2\left(x+1\right)\left(y+1\right)\)

                                                        

Câu 1:

a) Ta có: \(VT=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)

c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)

\(=ab+a+ab+b\)

\(=a+b+2ab\)(1)

Thay ab=1 vào biểu thức (1), ta được:

a+b+2(*)

Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)

Thay ab=1 vào biểu thức (2), ta được:

1+a+b+1=a+b+2(**)

Từ (*) và (**) ta được VT=VP(đpcm)

Câu 2:

Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)

\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)

\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)

\(\Leftrightarrow-11x-22=0\)

\(\Leftrightarrow-11x=22\)

hay x=-2

Vậy: x=-2

\(\left(x+y\right)\left(x+y+2\right)\)

\(=\left(x+y\right)^2+2\left(x+y\right)\)

\(=x^2+y^2+2xy+2\left(x+y\right)\)

\(=2+2xy+2\left(x+y\right)\)

\(=2\left(xy+x+y+1\right)\)

\(=2\left(x+1\right)\left(y+1\right)\)

20 tháng 8 2017

BĐVT ta đc:\(\left(x+y\right)\left(x+y+z\right)-2\left(x-1\right)\left(y+1\right)+2\)

               \(=x^2+2xy+y^2+xz+yz-\left[\left(2x-1\right)\left(y+1\right)\right]\)

                 

                   \(=x^2+2xy+y^2+xz+yz-\left(2xy+2x-y-1\right)\)

                   \(=x^2+y^2+2xy+xz+yz-2xy-2x+y+1\)

                Đề sai hả bn

20 tháng 8 2017

mik phân tích đc như này:

x^2+xy+yx+y^2+xz+yz-(2x+2)(y+1)+2=x^2+y^2

10 tháng 5 2018

\(x^2+y^2>=2xy\Rightarrow\frac{x}{x^2+y^2}< =\frac{x}{2xy}=\frac{1}{2y}\)(1)

\(y^2+z^2>=2yz\Rightarrow\frac{y}{y^2+z^2}< =\frac{y}{2yz}=\frac{1}{2z}\)(2)

\(x^2+z^2>=2xz\Rightarrow\frac{z}{x^2+z^2}< =\frac{z}{2xz}=\frac{1}{2x}\)(3)

từ (1) (2) (3)\(\Rightarrow\frac{x}{x^2+y^2}+\frac{y}{y^2+z^2}+\frac{z}{x^2+z^2}< =\frac{1}{2y}+\frac{1}{2z}+\frac{1}{2x}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)(đpcm)

10 tháng 5 2018

bài này phải x;y;z dương

Sửa đề: (x+y)(x+y+2)-2(x+1)(y+1)+2-x^2-y^2

=(x+y)^2+2(x+y)-x^2-y^2-2(xy+x+y+1)+2

=2xy+2(x+y)-2xy-2x-2y-2+2

=2(x+y)-2(x+y)-2+2

=0

=>Đẳng thức được chứng minh

21 tháng 2 2016

Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99] 

Khoảng cách của từng số hạng là 3

Số số hạng là: (99-12):3+1=30(số)

Vậy có 30 số có 2 chữ số chia hết cho 3

20 tháng 6 2018

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)

\(=\dfrac{19}{2}x^2-6x-22\)

Vậy biểu thức trên phụ thuộc vào biến x.

b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)

Giải:

VT = \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3+y^2+y-y^2-y-1\)

\(=y^3-1\)

Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).

20 tháng 6 2018

Giải:

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)

Vậy biểu thức trên phụ thuộc vào biễn x

b) \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3-y^2+y^2-y+y-1\)

\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)

\(=y^3-1\)

Vậy ...