K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Qmin=4

6 tháng 5 2016

từ x-y=2

=>y=x-2

Thay x=y-2 vào Q,ta có:

\(Q=x^2-\left(x-2\right)^2+x\left(x-2\right)\)

\(\Rightarrow Q=x^2-\left(x^2-4x+4\right)+x^2-2x=x^2-x^2+4x-4+x^2-2x=\left(x^2-x^2+x^2\right)+\left(4x-2x\right)-4\)

\(=x^2+2x-4=x^2+2x+1-5=x^2+x+x+1-5=x\left(x+1\right)+\left(x+1\right)-5=\left(x+1\right)^2-5\)

\(\left(x+1\right)^2\ge0\) với mọi x E R

=>\(\left(x+1\right)^2-5\ge0-5=-5\) với mọi x E R

=>GTNN của Q là -5

Dấu "=" xảy ra:

<=>\(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Mà y=x-2

=>x=-3

Vậy GTNN của Q là -5 tại x=-3;y=-1

16 tháng 5 2018

Ta có :

\(x-y=2\Rightarrow\left(x-y\right)^2=2^2=4\)

\(\Rightarrow xy+\left(x-y\right)^2=xy+\left(x-y\right)^2\ge xy\)

\(Min_Q=xy\Leftrightarrow x-y=0\Rightarrow x=y\)

_Chúc bạn học  tốt_

6 tháng 5 2016

Qmin=-5

6 tháng 5 2016

Từ x - y = 2 \(\Rightarrow x=y+2\)

Thế vào đa thức Q ta có: \(Q=\left(y+2\right)^2-y^2+\left(y+2\right)y=y^2+6y+4\)

\(\Rightarrow Q=y^2+6y+9-5=\left(y+3\right)^2-5\ge-5\)

Vậy min Q = -5 khi y = -3, x = -1. 

Chúc em học tập tốt :)

a ,Q=x2+y2-xy+4y=x(x-y)+y(y+4)=2x+(x-2)(x+2)=x2+2x+1-5=(x+1)2-

b,M=x2-y2+y2+4y+14=2(x+y)+y2+4y+14=2(2+2y)+y2+4y+14=y2+8y+16+2=(y+4)2+2\(\ge\)2

1 tháng 5 2018

:) :) :) :)

1 tháng 5 2018

ai lm đc ko

giúp tôi vs !!!!

10 tháng 8 2015

Ta có |x-100|+(x-y)^2 luôn luôn lớn hơn hoặc bằng 0, vậy giá trị của đa thức A luôn luôn lớn hơn hoặc bằng -2015
Vậy giá trị nhỏ nhất của đa thức A là -2015 khi |x-100|+(x-y)^2 bằng 0, tức là giá trị của |x-100|=(x-y)^2=0.
|x-100|=0 nên x-100 =0 => x=100
Kết luận: giá trị nhỏ nhất của A là -2015 khi x=100

Nếu đúng thì tick đúng nha

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)