Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2+y^2+z^2-xy-yz-zx\)
\(=\frac{1}{2}.\left(2x^2+2y^2+2z^2-2xy-2yz-2zx\right)\)
\(=\frac{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)}{2}\)
\(=\frac{\left(x-y\right)+\left(y-z\right)^2+\left(z-x\right)^2}{2}\) ( đpcm )
\(2P-2=2\left(xy+yz+zx\right)-2\left(x^2+y^2+z^2\right)+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)
\(=-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2+x^2\left(y-z\right)^2+y^2\left(z-x\right)^2+z^2\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(z^2-1\right)+\left(y-z\right)^2\left(x^2-1\right)+\left(z-x\right)^2\left(y^2-1\right)\le0\)
\(\text{( Do }x^2;y^2;z^2\le1\text{)}\)
\(\Rightarrow2P\le2\Rightarrow P\le1\)
\(\text{Dấu bằng xảy ra khi và chỉ khi 1 trong 3 số bằng 1; 2 số còn lại bằng 0.}\)
a/ \(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y=z\)
b/ \(\Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y=z=1\)
c/ BĐT sai