Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)