Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
{ x + 5y = 21 (1)
{ 2x + 3z = 51 (2)
. Ta có : (1) <=> x = 21 - 5y
mà y ≥ 0 --> 21 - 5y ≤ 21 --> x ≤ 21
. (2) <=> 3z = 51 - 2z ≥ 51 - 2.42 = 9 ( do x ≤ 21 --> -2x ≥ - 42)
--> 3z ≥ 9 <=> z ≥ 3
- nhân 2 vế của (2) với 2 rồi cộng với (1) ta có
5x + 5y + 6z = 123
<=> 5x + 5y + 5z = 123 - z
<=> 5M = 123 - z
. theo trên ta có z ≥ 3 --> 123 - z ≤ 123 - 3 = 120
--> 5M ≤ 120 <=> M ≤ 24
Dấu " = " xảy ra <=> x = 21 ; y = 0 ; z = 3
\(\sqrt{\left(2x-\sqrt{16}\right)^2}+\left(y^2.64\right)^2+lx+y+zl=0\)
\(\Rightarrow\sqrt{2x-4}+8y^4+lx+y+zl=0\)
\(\sqrt{2x-4};8y^4;lx+y+zl\ge0\)mà \(\sqrt{2x-4}+8y^4+lx+y+zl=0\)
\(\Rightarrow\sqrt{2x-4}=8y^4=lx+y+zl=0\)
=>2x-4=y4=lx+y+zl=0
=>x=2;y=0;z=-2
Vậy x=2;y=0;z=-2
1
2x . 3=3y .4
=> x=2y=>\(\frac{x}{2}=y\Rightarrow\frac{x}{4}=\frac{y}{2}\)
\(\frac{x}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{5}=\frac{x-2y+3z}{4-4+15}=\frac{1}{15}=\)
x=1/15x4=4/15
y=1/15x2=2/15
z=1/15x6=1/10
\(\Rightarrow x-y-z=\frac{4}{15}-\frac{2}{15}-\frac{1}{10}=\frac{1}{30}\)
\(\left(2x-3\right)^2-2\left(3x+1\right)^2=2x\left(x-2\right)+\left(x-1\right)\left(x+2\right)\)
4\(x^2\)-12x+9-2(9\(x^2\)+6x+1)=2\(x^2\)-4x+\(x^2\)+2x-x-2
4\(x^2\)-12x+9-18\(x^2\)-12x-2=2\(x^2\)-4x+\(x^2\)+2x-x-2
(4\(x^2\)-18\(x^2\)-2\(x^2\)-\(x^2\)) +(-12x-12x+4x-2x+x)+(9-2+2)=0
-17\(x^2\)-21x+9=0
Lời giải:
\(\left\{\begin{matrix} x+3z=21\\ 2x+5y=51\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} z=\frac{21-x}{3}\\ y=\frac{51-2x}{5}\end{matrix}\right.\)
\(\Rightarrow x+y+z=x+\frac{51-2x}{5}+\frac{21-x}{3}=\frac{4}{15}x+\frac{86}{5}\)
\(\Rightarrow P=(x+y+z)^2=\left(\frac{4}{15}x+\frac{86}{5}\right)^2\)
Vì \(y,z\geq 0\Rightarrow \left\{\begin{matrix} x=21-3x\leq 21\\ x=\frac{51-5y}{2}\leq \frac{51}{2}\end{matrix}\right.\Leftrightarrow x\leq 21\)
Do đó: \(P\leq \left(\frac{4}{15}.21+\frac{86}{5}\right)^2=\frac{1156}{9}\)
Dấu bằng xảy ra khi \(x=21; y=\frac{9}{5}; z=0\)
c) \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
\(\Rightarrow\orbr{\begin{cases}x^2=4.49=14^2\\y^2=4.16=8^2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=14\\y=8\end{cases}}\)
d) \(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}\Rightarrow\frac{x^2.y^2}{4.16}=\frac{x^4}{16}=\frac{4}{64}=\frac{1}{16}\Rightarrow x=1;y=2\)
a) Ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) và \(5x-y+3z=-16\)
\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{4}=-4\)
\(\Rightarrow\frac{5x}{15}=-4\Rightarrow5x=\left(-4\right).15=-60\Rightarrow x=60:5=12\)
\(\Rightarrow\frac{y}{5}=-4\Rightarrow y=\left(-4\right).5=-20\)
\(\Rightarrow\frac{3z}{-6}=-4\Rightarrow3z=\left(-4\right).\left(-6\right)=24\Rightarrow y=24:3=8\)
Vậy ___________________________________________________________