Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1:Biến đổi tương đương
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\Leftrightarrow\dfrac{x}{xy}+\dfrac{y}{xy}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+y^2+2xy\ge4xy\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)
C2:Dùng AM-GM
\(x+y\ge2\sqrt{xy}\);\(\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{x}\cdot\dfrac{1}{y}}=2\sqrt{\dfrac{1}{xy}}\)
Nhân theo vế 2 BĐT
\(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge4\sqrt{xy\cdot\dfrac{1}{xy}}=4\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
C3:Dùng Cauchy-Schwarz (dạng Engel)
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)
-3 cách trên đều có dấu "=" khi \(x=y\)
Lời giải:
Ta có:
\(A=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}=\frac{1}{x(x+1)}+\frac{1}{y(y+1)}+\frac{1}{z(z+1)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{y}-\frac{1}{y+1}+\frac{1}{z}-\frac{1}{z+1}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)(1)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x}+\frac{1}{1}\geq \frac{4}{x+1}\) và tương tự với các phân thức còn lại rồi cộng lại:
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+3\geq 4\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\Leftrightarrow \frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\leq \frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+3\right)(2)\)
Từ (1); (2) suy ra \(A\geq \frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\right)\)
Mà theo BĐT Cauchy- Schwarz ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}=\frac{9}{3}=3\)
Do đó: \(A\geq \frac{3}{4}(3-1)=\frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\)
\(\left\{{}\begin{matrix}a=\dfrac{1}{x}\\b=\dfrac{1}{y}\\c=\dfrac{1}{z}\end{matrix}\right.\) \(\Leftrightarrow\begin{matrix}a+b+c=1\\a^4+b^4+c^4\ge abc\end{matrix}\) \(x,y,z\ne0\Rightarrow a,b,c\ne0\)
\(a^2+b^2+x^2\ge ab+bc+ac\) (*){cơ bản} \(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\ge\left(ab.ac\right)+\left(ab.bc\right)+\left(ac.bc\right)=abc\left(a+b+c\right)=abc\)
(*) bình phương hai vế
\(\Leftrightarrow a^4+b^4+c^4+2\left(ab\right)^2+2\left(ac\right)^2+2\left(bc\right)^2\ge\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2abc\left(a+b+c\right)\)
\(\Leftrightarrow a^4+b^4+c^4\ge-\left[\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\right]+2abc\ge-abc+2abc=abc=>dpcm\)Đẳng thức:
a=b=c=1/3=> x=y=z=3
ta co \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) \(\Rightarrow\) \(\dfrac{1}{x.x}+\dfrac{1}{y.y}+\dfrac{1}{z.z}=1\)
\(\Rightarrow\dfrac{1}{x.x.x}+\dfrac{1}{y.y.y}+\dfrac{1}{z.z.z}=1\)\(\Rightarrow\dfrac{1}{x.x.x.x}+\dfrac{1}{y.y.y.y}+\dfrac{1}{z.z.z.z}=1\Leftrightarrow\dfrac{1}{x^4}+\dfrac{1^{ }}{y^4}+\dfrac{1}{z^4}=1\)
\(\Rightarrow\)\(\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{z^4}\)>= \(\dfrac{1}{x.y.z}\)
PP : biến đổi tương đương
Bài làm
Ta có \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+x\right)}{xy\left(x+y\right)}\ge\dfrac{4xy}{\left(x+y\right)xy}\)
Vì x , y >0 , ta suy ra (x+y)2 \(\ge\)4xy
\(\Leftrightarrow\left(x+y\right)^2-4xy\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
Hay (x-y)2 \(\ge\)0 ( điều này luôn đúng )
Vậy..........
a: Thiếu vế phải rồi bạn
b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
⇔ \(\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)
⇔ \(\left(\dfrac{1+xy-\left(1+x^2\right)}{\left(1+x^2\right)\left(1+xy\right)}\right)+\left(\dfrac{1+xy-\left(1+y^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\right)\ge0\)
⇔ \(\left(\dfrac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}\right)+\left(\dfrac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\right)\ge0\)
⇔ \(\dfrac{-x\left(x-y\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{-y\left(y-x\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
⇔ \(\dfrac{-x\left(x-y\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
=> -x(x-y)(1+y2)+y(x-y)(1+x2) ≥ 0
⇔ (x-y)[-x(1+y2)+y(1+x2)]≥0
⇔ (x-y)(-x-xy2+y+x2y) ≥0
⇔ (x-y)[-(x-y)+(x2y-y2x)] ≥ 0
⇔ (x-y)[-(x-y)+xy(x-y) ]≥ 0
⇔ (x-y)(x-y)(xy-1)≥ 0
⇔ (x-y)2 (xy-1) ≥0 (luôn đúng ∀ xy ≥ 1)
=> đpcm
bạn pải giả sử trước chứ nếu ntn thì người chấm hỏi ai cho lôi phần chứng minh ra làm phần mục đề