Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{x}{y}=a\Rightarrow\dfrac{y}{x}=\dfrac{1}{a}\)
Viết lại BĐT, ta được:
\(3\left(a+\dfrac{1}{a}\right)-\left(a^2+\dfrac{1}{a^2}\right)\le4\)
\(\Leftrightarrow4-3\left(a+\dfrac{1}{a}\right)+\left(a^2+\dfrac{1}{a^2}\right)\ge0\)
\(\Leftrightarrow4-3a-\dfrac{3}{a}+a^2+\dfrac{1}{a^2}\ge0\)
\(\Leftrightarrow a^2-3a+2+\dfrac{1}{a^2}-\dfrac{3}{a}+2\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{a}-2\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+\dfrac{1-a}{a}.\dfrac{1-2a}{a}\ge0\)
\(\Leftrightarrow\left(a-1\right)\left[a-2+\dfrac{2a-1}{a^2}\right]\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a^3-2a^2+2a-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a^3-a^2+a-a^2+a-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left[a^2\left(a-1\right)-a\left(a-1\right)+a-1\right]\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a-1\right)\left(a^2-a+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left[\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\ge0\) ( luôn đúng)
Dấu " = " xảy ra khi: \(a=1\Leftrightarrow x=y\)
a, Áp dụng bđt cosi ta có :
2xy.(x^2+y^2) < = (2xy+x^2+y^2)^2/4 = (x+y)^4/4 = 2^4/4 = 4
<=> xy.(x^2+y^2) < = 2
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
Vậy ............
Tk mk nha
b, Có : x.y < = (x+y)^2/4 = 2^2/4 = 1
<=> 2xy < = 2
Ta có : 1/x^2+y^2 + 1/xy = 1/x^2+y^2 + 1/2xy + 1/2xy >= \(\frac{9}{x^2+y^2+2xy+2xy}\)
= \(\frac{9}{\left(x+y\right)^2+2xy}\)
< = \(\frac{9}{2^2+2}\)= 3/2
=> ĐPCM
Dấu "=" xảy ra <=> x=y=1
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)
Dáu "=" xảy ra \(\Leftrightarrow\) \(x=y=z=1\)
a,b,c,d > 0 ta có:
- a < b nên a.c < b.c
- c < d nên c.b < d.b
Áp dụng tính chất bắc cầu ta được: a.c < b.c < b.d hay a.c < b.d (đpcm)
\(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2-2xy=1\)
Áp dụng bđt AM-GM ta có
\(\left(x+y\right)^2-\frac{\left(x+y\right)^2}{2}\le1\)\(\Leftrightarrow\left(x+y\right)^2\le2\Rightarrow0< x+y\le\sqrt{2}\)