Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)
\(\Leftrightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(x+z\right)}{30}\)
\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)
Xét \(\frac{z+x}{10}=\frac{y+z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{4}=\frac{x-y}{4}\) (1)
Xét \(\frac{x+y}{15}=\frac{z+x}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{5}=\frac{y-z}{5}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\)
Đặt x=1+a =>y=1-a
=>x5+y5=(1+a)5+(1-a)5
=10a4+20a2+2\(\ge\)2 (vì \(a^4\ge0;a^2\ge0\)với mọi a)
=>x5+y5\(\ge\)2 (Đpcm)
Dấu = khi a=0 <=>x=y=1
a. VP: \(\left(x+y\right)^{1999}\cdot\left(x-y\right)^{1999}=\left[\left(x+y\right)\left(x-y\right)\right]^{1999}\)
\(=\left(x^2-xy+xy-y^2\right)^{1999}=\left(x^2-y^2\right)^{1999}=VT\)
--> đpcm
b. VT: \(\dfrac{\left(5^4-5^3\right)^3}{125^4}=\dfrac{500^3}{125^4}=\dfrac{125^3\cdot4^3}{125^4}=\dfrac{4^3}{125}=\dfrac{64}{125}=VP\)
--> đpcm
Từ 2.(x + y)= 5(y + z) = 3(z + x) => \(\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(z+x\right)}{30}\) => \(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{\left(x+z\right)-\left(y+z\right)}{10-6}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}\)
=> \(\frac{x-y}{4}=\frac{y-z}{5}\) => \(\frac{x-y}{y-z}=\frac{4}{5}\)
Vậy...
Sai đề khi x=2 ; y=-1 thì sai vcl
nhầm chứ : thay x=2 ; y=0