K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 1 2022

Lần lượt cộng vế và trừ vế 2 đẳng thức ta được:

\(\left\{{}\begin{matrix}\dfrac{10}{x}=x^2+3y^2\\\dfrac{2}{y}=3x^2+y^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^3+3xy^2=10\\y^3+3x^2y=2\end{matrix}\right.\)

\(\Rightarrow x^3+3xy^2-3x^2y-y^3=8\)

\(\Rightarrow\left(x-y\right)^3=8\)

\(\Rightarrow x-y=2\)

11 tháng 12 2022

1: \(\left\{{}\begin{matrix}\left|x-1\right|+\dfrac{2}{y}=2\\-\left|x-1\right|+\dfrac{4}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{y}=3\\\left|x-1\right|=2-\dfrac{2}{y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=2-\dfrac{2}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{2;0\right\}\end{matrix}\right.\)

2: \(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\2\left|x-1\right|+\dfrac{4}{y-1}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{y-1}=-9\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=3-\dfrac{2}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{3;-1\right\}\end{matrix}\right.\)

3: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-5}+\dfrac{12}{\sqrt{y}-2}=4\\\dfrac{2}{x-5}-\dfrac{1}{\sqrt{y}-2}=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{\sqrt{y}-2}=13\\\dfrac{1}{x-5}=2-\dfrac{6}{\sqrt{y}-2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=9\\\dfrac{1}{x-5}=2-\dfrac{6}{3-2}=2-\dfrac{6}{1}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x-5=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{4}\\y=9\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Lời giải:
Xét hiệu:

\(\frac{x^4}{(x^2+y^2)(x+y)}+\frac{y^4}{(y^2+z^2)(y+z)}+\frac{z^4}{(z^2+x^2)(z+x)}-\left(\frac{y^4}{(x^2+y^2)(x+y)}+\frac{z^4}{(y^2+z^2)(y+z)}+\frac{x^4}{(z^2+x^2)(z+x)}\right)\)

\(=\frac{x^4-y^4}{(x^2+y^2)(x+y)}+\frac{y^4-z^4}{(y^2+z^2)(y+z)}+\frac{z^4-x^4}{(z^2+x^2)(z+x)}\)

\(=x-y+y-z+z-x=0\)

\(\Rightarrow \frac{x^4}{(x^2+y^2)(x+y)}+\frac{y^4}{(y^2+z^2)(y+z)}+\frac{z^4}{(z^2+x^2)(z+x)}=\frac{y^4}{(x^2+y^2)(x+y)}+\frac{z^4}{(y^2+z^2)(y+z)}+\frac{x^4}{(z^2+x^2)(z+x)}\)

Do đó:
\(2F=\frac{x^4+y^4}{(x^2+y^2)(x+y)}+\frac{y^4+z^4}{(y^2+z^2)(y+z)}+\frac{z^4+x^4}{(z^2+x^2)(z+x)}\)

\(\geq \frac{\frac{(x^2+y^2)^2}{2}}{(x^2+y^2)(x+y)}+\frac{\frac{(y^2+z^2)^2}{2}}{(y^2+z^2)(y+z)}+\frac{\frac{(z^2+x^2)^2}{2}}{(z^2+x^2)(z+x)}\) (áp dụng BĐT Cauchy)

hay \(2F\geq \frac{x^2+y^2}{2(x+y)}+\frac{y^2+z^2}{2(y+z)}+\frac{z^2+x^2}{2(z+x)}\)

Mà cũng theo BĐT Cauchy thì:

\(\frac{x^2+y^2}{2(x+y)}+\frac{y^2+z^2}{2(y+z)}+\frac{z^2+x^2}{2(z+x)}\geq \frac{\frac{(x+y)^2}{2}}{2(x+y)}+\frac{\frac{(y+z)^2}{2}}{2(y+z)}+\frac{\frac{(z+x)^2}{2}}{2(x+z)}=\frac{x+y+z}{2}=\frac{1}{2}\)

\(\Rightarrow 2F\geq \frac{1}{2}\Rightarrow F\geq \frac{1}{4}\)

Vậy \(F_{\min}=\frac{1}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

12 tháng 1 2019
https://i.imgur.com/NPx7OjZ.jpg
12 tháng 1 2019
https://i.imgur.com/cKHt1qr.jpg
24 tháng 5 2018

Ta có BĐT:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow6\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)+2016\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow7.\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le2016\)
Xét \(P=\frac{1}{\sqrt{3\left(2x^2+y^2\right)}}+\frac{1}{\sqrt{3\left(2y^2+z^2\right)}}+\frac{1}{\sqrt{3\left(2z^2+x^2\right)}}\)
\(P^2=\left(\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2x^2+y^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2y^2+z^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2z^2+x^2}}\right)^2\)
Áp dụng BĐT Bunhiacopxki ta có:
\(P^2\le\left(\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2\right)\left(\left(\frac{1}{\sqrt{2x^2+y^2}}\right)^2+\left(\frac{1}{\sqrt{2y^2+z^2}}\right)^2+\left(\frac{1}{\sqrt{2z^2+x^2}}\right)^2\right)\)
\(\Leftrightarrow P^2\le\frac{1}{2x^2+y^2}+\frac{1}{2y^2+z^2}+\frac{1}{2z^2+x^2}\)
Mặt khác ta có:
\(\frac{1}{2x^2+y^2}=\frac{1}{x^2+x^2+y^2}\le\frac{1}{9}\left(\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\frac{1}{2y^2+z^2}\le\frac{1}{9}\left(\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
\(\frac{1}{2z^2+x^2}\le\frac{1}{9}\left(\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{x^2}\right)\)
\(\Rightarrow P^2\le\frac{1}{3}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le\frac{1}{3}.2016=672\)
\(\Rightarrow P\le4\sqrt{42}\)
Dấu '=' xảy ra khi \(x=y=z=\sqrt{\frac{1}{672}}\)
 

23 tháng 5 2018

cộng 2016 nhé

AH
Akai Haruma
Giáo viên
21 tháng 7 2017

Lời giải:

Ta có

\(xy+yz+xz=1\Rightarrow x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\)

Tương tự: \(\left\{\begin{matrix} y^2+1=(y+z)(y+x)\\ z^2+1=(z+x)(z+y)\end{matrix}\right.\)

Do đó \(A=x\sqrt{\frac{(y+z)(y+x)(x+z)(z+y)}{(x+y)(x+z)}}+y\sqrt{\frac{(z+x)(z+y)(x+y)(x+z)}{(y+z)(y+x)}}+z\sqrt{\frac{(x+y)(x+z)(y+x)(y+z)}{(z+x)(z+y)}}\)

\(\Leftrightarrow A=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)

Vậy \(A=2\)

22 tháng 7 2017

tks

NV
7 tháng 5 2021

\(4\le\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}+2\right)^2\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+2\ge4\)

\(\Rightarrow2\le\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\Rightarrow x+y\ge2\)

\(\Rightarrow P\ge\dfrac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Dấu "=" xảy ra khi \(x=y=1\)

7 tháng 5 2021

Dạ có thể diễn đạt theo cách dễ hiểu cho đứa ngu lâu dốt bền như em được không ạ ? ._.

27 tháng 3 2017

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) thì bài toán trở thành

Cho \(a+b+ab=3\)

Tìm GTLN của: \(M=\dfrac{3b}{a+1}+\dfrac{3a}{b+1}-a^2-b^2=\dfrac{ab}{a+1}+\dfrac{ab}{b+1}\)

Ta có: \(3=a+b+ab\ge3\sqrt[3]{a^2b^2}\)

\(\Leftrightarrow ab\le1\)

Ta lại có: \(M=\dfrac{ab}{a+1}+\dfrac{ab}{b+1}=ab.\dfrac{a+1+b+1}{ab+a+b+1}=ab.\dfrac{5-ab}{4}\)

\(=\dfrac{5ab-a^2b^2}{4}=\dfrac{\left(-a^2b^2+2ab-1\right)+3ab+1}{4}=\dfrac{-\left(ab-1\right)^2+3ab+1}{4}\le\dfrac{3+1}{4}=1\)

Vậy GTLN là \(M=1\) khi \(a=b=1\) hay \(x=y=1\)

29 tháng 8 2021

Giá trị lớn nhất là 3