K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

\(x=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\Rightarrow x^3=5\sqrt{2}+7-\left(5\sqrt{2}-7\right)-3\sqrt[3]{\left(5\sqrt{2}\right)^2-7^2}.x\)

\(=14-3.\sqrt[3]{50-49}.x=14-3x\)

\(\Rightarrow x^3=14-3x\Rightarrow x^3+3x=14\)

11 tháng 8 2017

ai nay dung kinh nghiem la chinh

cau a)

ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)

\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)

khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)

\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)

\(x=\frac{3-1}{1}=2\)

suy ra 

x^3-4x+1=1

A=1^2018

A=1

b)

ta thay

\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)

khi do 

\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)

\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)

x=2

thay vao

x^3+3x-14=0

B=0^2018

B=0

25 tháng 7 2018

a,\(x\ge0,x\ne49\)

NV
12 tháng 11 2018

\(\dfrac{1}{\sqrt[3]{7+5\sqrt{2}}}=\dfrac{\sqrt[3]{7-5\sqrt{2}}}{\sqrt[3]{\left(7+5\sqrt{2}\right)\left(7-5\sqrt{2}\right)}}=-\sqrt[3]{7-5\sqrt{2}}\)

\(\Rightarrow x=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\)

\(\Rightarrow x^3=\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)^3=14-3\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)\)

\(\Rightarrow x^3=14-3x\Rightarrow x^3+3x-14=0\)

Vậy F=0

AH
Akai Haruma
Giáo viên
28 tháng 6 2024

Lời giải:

Đặt \(\sqrt[3]{\sqrt{5}+2}=a; \sqrt[3]{\sqrt{5}-2}=b\)

\(\Rightarrow a^3-b^3=4; ab=1\)

Ta có:

$x=a-b$

$\Rightarrow x^3=(a-b)^3=a^3-b^3-3ab(a-b)=4-3x$

$\Rightarrow x^3+3x=4$

$\Rightarrow f(x)=4$

AH
Akai Haruma
Giáo viên
22 tháng 9 2020

Lời giải:

Đặt $\sqrt[3]{5\sqrt{2}+7}=a; \sqrt[3]{5\sqrt{2}-7}=b$

Ta có:

$a^3-b^3=14$

$ab=\sqrt[3]{(5\sqrt{2}+7)(5\sqrt{2}-7)}=1$

$x=a-b$

$\Rightarrow x^3=(a-b)^3=a^3-b^3-3ab(a-b)=14-3.1.x$

$\Leftrightarrow x^3+3x-14=0$

$\Leftrightarrow (x-2)(x^2+2x+7)=0$

Dễ thấy $x^2+2x+7>0$ nên $x-2=0$

$\Rightarrow x=2$

$\Rightarrow f(x)=x^3+2x=2^3+2.2=12$

21 tháng 7 2018

b) Ta có: \(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)

\(B=x^5-3x^4-3x^3+6x^2-20x+2021\)

\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2016\)

\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2016\)

Thế \(x^2-4x+1=0\)\(\Rightarrow B=2016.\)

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với