Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O
- Áp dụng bđt trong tam giác , ta có :
AB < OB + OA ; BC < OB + OC ; CD < OC + OD ; AD < OA + OD
=> AB +BC + CD + AD < 2(OA + OB + OC + OD)
=> (AB+BC+CD+AD)/2<AC+BD (1)
- AB + BC > AC ; BC + CD > BD ; CD + AD > AC ; AB + AD > BD
=> 2(AB + BC + CD + DA) > 2(AC + BD)
=> AB + BC + CD + DA > AC + BD (2)
Từ (1) và (2) suy ra đpcm
A B C D O
Áp dụng bất đẳng thức về cạnh :
- Trong tam giác OAB : \(AB< OA+OB\left(1\right)\)
- Trong tam giác OCD : \(CD< OC+OD\left(2\right)\)
Cộng (1) và (2) theo vế được : \(AB+CD< OA+OB+OC+OD=AC+BD\)
\(\Rightarrow AB+CD< AC+BD\left(\text{*}\right)\)
Tương tự, ta áp dụng bất đẳng thức về cạnh trong các tam giác ABC , ACD , ABD , BDC được :
- \(\hept{\begin{cases}AC< AB+BC\left(3\right)\\AC< AD+DC\left(4\right)\end{cases}}\)
- \(\hept{\begin{cases}BD< AD+AB\left(5\right)\\BD< CD+BC\left(6\right)\end{cases}}\)
Cộng (3) , (4) , (5) , (6) theo vế được :
\(2\left(AC+BD\right)< 2\left(AB+BC+CD+AD\right)\Rightarrow AC+BD< AB+BC+CD+AD\left(\text{*}\text{*}\right)\)
Từ (*) và (**) ta được điều phải chứng minh.