K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2019

Ta có tứ giác ABCD có 2 đường chéo AC ⊥ BD là hình vuông

=> AB=BC=CD=DA

áp dụng PITAGO vào tam giác tuỳ thích(tam giác vuông lớn)

AB2+DC2=AB2+DA2=BD2=(2R)2=4R2

26 tháng 5 2019

BỔ SUNG VÀO CÂU ĐẦU VÌ NT DG TRÒN NÊN NÓ LÀ HÌNH VUÔNG

6 tháng 7 2016

A B C D E O

Gọi DE là đường kính của (O;R) 

Dễ thấy \(\hept{\begin{cases}AC\perp BD\\BE\perp BD\end{cases}}\)\(\Rightarrow BE\text{//}AC\Rightarrow BECA\)là hình thang mà BECA nội tiếp (O;R) nên BECA là hình thang cân.

Do đó ta có : AB = CE \(\Rightarrow AB^2+CD^2=CE^2+CD^2=DE^2=\left(2R\right)^2=4R^2\) không đổi.

Vậy ta có điều phải chứng minh.

vì tam giác OAB vuông tại O, theo pytago
OA^2 + OB^2 = AB^2
vì tam giác OAD vuông tại O, theo pytago
OA^2 + OD^2 = AD^2
vì tam giác ODC vuông tại O, theo pytago
OD^2 + OC^2 = DC^2
vì tam giác OBC vuông tại O, theo pytago
OB^2 + OC^2 = BC^2
cộng vế với vế của từng đẳng thức trên ta được
AB^2 + BC^2 + CD^2 + DA^2 = 2(OA^2 + OB^2 + OC^2 + OD^2)

vì tam giác OAB vuông tại O, theo pytago
OA^2 + OB^2 = AB^2
vì tam giác OAD vuông tại O, theo pytago
OA^2 + OD^2 = AD^2
vì tam giác ODC vuông tại O, theo pytago
OD^2 + OC^2 = DC^2
vì tam giác OBC vuông tại O, theo pytago
OB^2 + OC^2 = BC^2
cộng vế với vế của từng đẳng thức trên ta được
AB^2 + BC^2 + CD^2 + DA^2 = 2(OA^2 + OB^2 + OC^2 + OD^2)

12 tháng 4 2017

ˆBAD=900+12002=1050BAD^=900+12002=1050 (góc nội tiếp chắn cung BCD) (1)

ˆADC=600+9002=750ADC^=600+9002=750 ( góc nội tiếp chắn cung ABC) (2)

Từ (1) và (2) có:

ˆBAD+ˆADC=1050+750=1800BAD^+ADC^=1050+750=1800 (3)

ˆBADBAD^ˆADCADC^ là hai góc trong cùng phía tạo bởi cát tuyến AD và hai đường thẳng AB, CD.

Đẳng thức (3) chứng tỏ AB // CD. Do đó tứ giác ABCD là hình thang, mà hình thang nội tiếp là hình thang cân.

Vậy ABCD là hình thang cân (BC = AD và sđ cung BC = AD = 90o )

b) Giả sử hai đường chéo AC và BD cắt nhau tại I.

ˆCIDCID^ là góc có đỉnh nằm trong đường tròn, nên:

ˆCID=sđcungAB+sđcungCD2=600+12002=900CID^=sđcungAB+sđcungCD2=600+12002=900

Vậy AC ⊥ BD

c)

Vì sđ cung AB = 60o nên ˆAIB=600AIB^=600 => ∆AIB đều, nên AB = R

Vì sđ cung BC = 90o nên BC = R√2

AD = BC = R√2

nên sđ cung CD= 120o nên CD = R√3



12 tháng 4 2017

Hướng dẫn giải:

ˆBAD=900+12002=1050BAD^=900+12002=1050 (góc nội tiếp chắn cung BCD) (1)

ˆADC=600+9002=750ADC^=600+9002=750 ( góc nội tiếp chắn cung ABC) (2)

Từ (1) và (2) có:

ˆBAD+ˆADC=1050+750=1800BAD^+ADC^=1050+750=1800 (3)

ˆBADBAD^ˆADCADC^ là hai góc trong cùng phía tạo bởi cát tuyến AD và hai đường thẳng AB, CD.

Đẳng thức (3) chứng tỏ AB // CD. Do đó tứ giác ABCD là hình thang, mà hình thang nội tiếp là hình thang cân.

Vậy ABCD là hình thang cân (BC = AD và sđ cung BC = AD = 90o )

b) Giả sử hai đường chéo AC và BD cắt nhau tại I.

ˆCIDCID^ là góc có đỉnh nằm trong đường tròn, nên:

ˆCID=sđcungAB+sđcungCD2=600+12002=900CID^=sđcungAB+sđcungCD2=600+12002=900

Vậy AC ⊥ BD

c)

Vì sđ cung AB = 60o nên ˆAIB=600AIB^=600 => ∆AIB đều, nên AB = R

Vì sđ cung BC = 90o nên BC = R√2

AD = BC = R√2

nên sđ cung CD= 120o nên CD = R√3