K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta thấy : A + B + C + D = 360°

Tự áp dụng tính chất dãy tỉ số bằng nhau ta có : 

A = 144° 

B = 108° 

C = 72° 

D = 36° 

b) Vì DE , CE là phân giác ADC và ACD 

=> EDC = ADE = 18° 

=> BCE = ECD = 36° 

Xét ∆DEC ta có : 

EDC + DEC + ECD = 180° 

=> DEC = 126° 

Ta có : góc ngoài tại đỉnh C

=> 180° -  BCD = 108° 

Góc ngoài tại đỉnh D 

=> 180° - ADC = 144° 

Mà DF , CF là phân giác ngoài góc C , D 

=> CDF = 72° 

=> DCF = 54° 

Xét ∆CDF ta có : 

CDF + DFC + DCF = 180° 

=> DFC = 44° 

23 tháng 8 2016

Bài 1 : 

Ta có : 

B+BEF+BFE=180 
D+DEF+DFE=180 
mà B+D=180=>BEF+BFE+DEF+DFE=180 
(BEF+BFE+DEF+DFE)/2=90 
mà (BEF+DEF)/2=MEF;(BFE+DFE)/2=MFE 
=>MEF+MFE=90=>EMF=90

23 tháng 8 2016
Toán Toán lớp 8
alt text
 
Huỳnh Châu Giang
Huỳnh Châu Giang16/06/2016 lúc 16:07

a/Xét tứ giác ABCD có:

Góc C+D+DAB+CBA=360 độ

-> Góc C+D=3600-(DAB+CBA)                         (1)

Xét tam giác AEB có:

Góc AEB=1800-(EAB+EBA)

\(=180^o-\left(\frac{DBA}{2}+\frac{CBA}{2}\right)\)

\(=\frac{360-\left(DAB+CBA\right)}{2}\)

\(\Rightarrow AEB=360^o-\left(DAB+CBA\right)\)             (2)

Từ (1) và (2) suy ra:

Góc AEB=D+C2D+C2

Kéo dài CA thành đường thẳng x, BD thành đường thẳng y.

Có: Góc CAB+BAx=1800

ABC+ABy=1800

-> Góc CAB=3600-(BAx+ABy)                       (3)

Xét tam giác AFB:

Góc AFB=1800-(FAB+FBA)

\(=180^o-\left(\frac{BAx+ABy}{2}\right)\)

\(\Rightarrow\frac{360-BAx+ABy}{2}\)

2AFB=3600(Bax+ABy)→2⋅AFB=3600−(Bax+ABy)                (4)

Từ (3) và (4) suy ra:

\(2.AFB=A+B\)

\(_{\Rightarrow AFB=\frac{A+B}{2}}\)

 

 
7 tháng 8 2019

hgjngfm

17 tháng 9 2015

A B C D E F 1 1 2 2

Xét Tứ giác ABCD có: góc A + B + C + D = 360o =>  100o + 120o + (C + D) = 360=> góc C + D = 140o

DE; CE lần lượt là p/g của góc D; C => góc D1 = D/ 2 ; C1 = C/ 2 => góc (D1 + C1) = (D + C) /2 = 700

Xét tam giác DEC có: góc D+ góc E + góc C1 = 180=> góc DEC = 180- (D1 + C1) = 180- 70= 110o

Vì tia Dx là p/g ngoài của góc D; DE là p/g trong của góc D => Dx vuông góc với DE => DF vuông góc với DE => góc EDF = 900

=> góc D= 90- D1

Vì tia Cy là p/g ngoài  của góc ACD ; CE là p/g trong của góc ACD => Cy vuông góc với CE => CF vuông góc với CE => góc ECF = 90o

=> góc C2 = 90o - C1

Xét tam giác CDF có: góc C+ góc CFD + góc D2 = 180o

=> góc CFD + (90- D1 + 90- C1) = 180o => góc CFD + 180o - (D1 + C1) = 180=> góc CFD = D1 + C1 = 90o