Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân
cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân
a, Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)
Mat khac do AB=BC nen tam giac ABC can suy ra \(\widehat{CAB}=\widehat{ACB}\)
Tu day ta co \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua \(\widehat{ADC}\)
Vẽ \(BM⊥AD\)tại M và \(BN⊥CD\)tại N
Dễ thấy \(\Delta MAB=\Delta NCB\)( cạnh huyền - góc nhọn )
\(\Rightarrow\)BM = BN , \(\widehat{MAB}=\widehat{BCN}\)
\(\Rightarrow\) BD là tia phân giác của góc ABC
Xét \(\Delta ABD\) cân tại A \(\Rightarrow\)\(\widehat{ABD}=\widehat{ADB}\)
ta có: \(\widehat{ABD}=\widehat{BDC}\)\(\Rightarrow\) AB // CD
Xét tứ giác ABCD có: AB // CD và \(\widehat{ADC}=\widehat{BCD}\left(=\widehat{MAB}\right)\)
nên là hình thang cân
Tứ giác có 3 cạnh bằng nhau là hình thoi hoặc hình vuông
Hai hình này đều có tổng của 2 góc kề nhau bằng 180o