Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho hình tứ giác ABCD, E là giao điểm của các đường thẳng AB và CD, F là giao điểm của các đường thẳng BC và AD. Các tia phân giác của góc E và F cắt nhau ở I. CMR:
a, Nếu góc BAD=130 độ, góc BCD= 50 độ thì IE vuông góc với IF.
b, Góc EIF bằng nửa tổng của một trong hai cặp góc đối của tứ giác ABCD
a/ Gọi M là giao điểm của AB và EI, N là giao điểm của AD và FI.
Ta có BMIˆ=MEBˆ+MBEˆ=EIFˆ+MFIˆBMI^=MEB^+MBE^=EIF^+MFI^ ( góc ngoài tam giác ) →EIFˆ=MEBˆ+MBEˆ−MFIˆ (1)→EIF^=MEB^+MBE^−MFI^ (1)
Lại có DNIˆ=NFDˆ+NDFˆ=EIFˆ+NEIˆDNI^=NFD^+NDF^=EIF^+NEI^ ( góc ngoài tam giác ) →EIFˆ=NFDˆ+NDFˆ−NEIˆ (2)→EIF^=NFD^+NDF^−NEI^ (2)
Do EM là phân giác AEBˆ→MEBˆ=NEIˆAEB^→MEB^=NEI^
Do FN là phân giác
a/ Gọi M là giao điểm của AB và EI, N là giao điểm của AD và FI.
Ta có BMIˆ=MEBˆ+MBEˆ=EIFˆ+MFIˆBMI^=MEB^+MBE^=EIF^+MFI^ ( góc ngoài tam giác ) →EIFˆ=MEBˆ+MBEˆ−MFIˆ (1)→EIF^=MEB^+MBE^−MFI^ (1)
Lại có DNIˆ=NFDˆ+NDFˆ=EIFˆ+NEIˆDNI^=NFD^+NDF^=EIF^+NEI^ ( góc ngoài tam giác ) →EIFˆ=NFDˆ+NDFˆ−NEIˆ (2)→EIF^=NFD^+NDF^−NEI^ (2)
Do EM là phân giác AEBˆ→MEBˆ=NEIˆAEB^→MEB^=NEI^
Do FN là phân giác AF