K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 5 2019

S A B C M

\(CM=\sqrt{BM^2+BC^2}=\sqrt{\left(\frac{AB}{2}\right)^2+BC^2}=\frac{a\sqrt{21}}{2}\)

Từ A kẻ \(AH\perp CM\Rightarrow\Delta AHM\sim\Delta CBM\)

\(\Rightarrow\frac{AH}{AM}=\frac{BC}{CM}\Rightarrow AH=\frac{AM.BC}{CM}=\frac{AB.BC}{2CM}=\frac{a\sqrt{42}}{7}\)

Từ A kẻ \(AK\perp SH\Rightarrow AK\perp\left(SMC\right)\Rightarrow AK=d\left(A;\left(SMC\right)\right)\)

\(\frac{1}{AK^2}=\frac{1}{AH^2}+\frac{1}{SA^2}\Rightarrow AK=\frac{AH.SA}{\sqrt{AH^2+SA^2}}=\frac{2a\sqrt{51}}{17}\)

NV
15 tháng 5 2019

Câu 1:

\(ABCI\) là hình vuông \(\Rightarrow\left\{{}\begin{matrix}CD=\sqrt{IC^2+ID^2}=a\sqrt{2}\\AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow AC^2+CD^2=AD^2\Rightarrow\Delta ACD\) vuông cân tạiC

\(\Rightarrow OC\perp CD\) \(\Rightarrow CD\perp\left(SOC\right)\)

Từ O kẻ \(OH\perp SC\Rightarrow OH\perp\left(SCD\right)\) \(\Rightarrow OH\perp SD\)

\(\left\{{}\begin{matrix}BI\perp SO\\BI\perp OC\end{matrix}\right.\) \(\Rightarrow BI\perp\left(SOC\right)\Rightarrow BI\perp OH\)

\(SC=\sqrt{SO^2+OC^2}=a\sqrt{2}\) \(\Rightarrow SH=\frac{SO^2}{SC}=\frac{3a\sqrt{2}}{4}\)

Qua H kẻ đường thẳng song song CD cắt SD tại K

\(\frac{SH}{SC}=\frac{HK}{CD}\Rightarrow HK=\frac{SH.CD}{SC}=\frac{3a}{4}\)

Trên toa OI lấy điểm P sao cho \(OP=\frac{3a}{4}\)

\(\Rightarrow OHKP\) là hình chữ nhật \(\Rightarrow OH//KP\Rightarrow KP\) là đoạn vuông góc chung của \(BI\) và SD

\(\frac{1}{OH^2}=\frac{1}{SO^2}+\frac{1}{OC^2}\Rightarrow KP=OH=\frac{SO.OC}{\sqrt{SO^2+OC^2}}=\frac{a\sqrt{6}}{4}\)

NV
15 tháng 5 2019

Câu 2:

a/ Kẻ \(MH\perp AC\Rightarrow MH\perp\left(SAC\right)\)

\(\Rightarrow\widehat{MSH}\) là góc giữa SM và (SAC)

\(SM=\sqrt{SA^2+\left(\frac{AB}{2}\right)^2}=a\sqrt{10}\) ; \(MH=\frac{1}{2}\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)

\(sin\widehat{MSH}=\frac{MH}{SM}=\frac{\sqrt{30}}{20}\Rightarrow\widehat{MSH}\approx15^053'\)

b/ \(\left\{{}\begin{matrix}MC\perp AB\\MC\perp SA\end{matrix}\right.\) \(\Rightarrow MC\perp\left(SAB\right)\)

\(\Rightarrow\widehat{SMA}\) là góc giữa \(\left(SMC\right)\)\(\left(ABC\right)\)

\(tan\widehat{SMA}=\frac{SA}{AM}=3\Rightarrow\widehat{SMA}\approx71^033'\)

c/ Gọi N là trung điểm AC \(\Rightarrow NG=\frac{1}{3}NS\) (t/c trọng tâm)

\(\Rightarrow d\left(G;\left(SAB\right)\right)=\frac{1}{3}d\left(N;\left(SAB\right)\right)\)

Từ N kẻ \(NK\perp AB\Rightarrow NK\perp\left(SAB\right)\)

\(\Rightarrow NK=d\left(N;\left(SAB\right)\right)\)

\(NK=\frac{1}{2}.\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\Rightarrow d\left(G;\left(SAB\right)\right)=\frac{a\sqrt{3}}{6}\)

NV
12 tháng 5 2019

S A B C D H M N K

Kẻ \(AH\perp BD\Rightarrow BD\perp\left(SAH\right)\Rightarrow\widehat{SHA}\) là góc giữa (SBD) và (ABCD)

\(\frac{1}{AH^2}=\frac{1}{AD^2}+\frac{1}{AB^2}\Rightarrow AH=\frac{AB.AD}{\sqrt{AB^2+AD^2}}=\frac{a\sqrt{3}}{2}\)

\(SA=\sqrt{SD^2-AD^2}=2a\)

\(tan\widehat{SHA}=\frac{SA}{AH}=\frac{4\sqrt{3}}{3}\Rightarrow\widehat{SHA}\simeq66^035'\)

b/ \(MS=MA\Rightarrow d\left(S;\left(MND\right)\right)=d\left(A;\left(MND\right)\right)\)

Từ A kẻ \(AK\perp MD\Rightarrow AK\perp\left(MND\right)\Rightarrow AK=d\left(A;\left(MND\right)\right)\)

\(AM=\frac{SA}{2}=a\Rightarrow\frac{1}{AK^2}=\frac{1}{AM^2}+\frac{1}{AD^2}\Rightarrow AK=\frac{AM.AD}{\sqrt{AM^2+AD^2}}=\frac{a\sqrt{3}}{2}\)

NV
19 tháng 4 2019

S A B C N M H

\(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\)

b/ Gọi N là trung điểm SA \(\Rightarrow MN\) là đường trung bình tam giác SAB

\(\Rightarrow MN//SB\Rightarrow SB//\left(CMN\right)\)

\(\Rightarrow d\left(SB;CM\right)=d\left(SB;\left(CMN\right)\right)=d\left(S;\left(CMN\right)\right)\)

Mặt khác SA cắt \(\left(CMN\right)\) tại N

\(NS=NA=\frac{1}{2}SA=a\Rightarrow d\left(S;\left(CMN\right)\right)=d\left(A;\left(CMN\right)\right)\)

\(CM=\sqrt{BC^2+BM^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)

Kẻ \(AH\perp CM\Rightarrow\Delta MHA\sim\Delta MBC\) (tam giác vuông có 1 góc đối đỉnh)

\(\Rightarrow\frac{AH}{BC}=\frac{AM}{CM}\Rightarrow AH=\frac{BC.AM}{CM}=\frac{a\sqrt{5}}{5}\)

Từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(CMN\right)\right)\)

\(\frac{1}{AK^2}=\frac{1}{AN^2}+\frac{1}{AH^2}\Rightarrow AK=\frac{AN.AH}{\sqrt{AN^2+AH^2}}=\frac{a\sqrt{6}}{6}\)

NV
4 tháng 5 2019

S A B C D H M K O N

a/ \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\)

\(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AH\)

\(\left\{{}\begin{matrix}AH\perp BC\\AH\perp SB\end{matrix}\right.\) \(\Rightarrow AH\perp\left(SBC\right)\)

b/ \(\widehat{SBA}=45^0\Rightarrow\Delta SAB\) vuông cân tại A \(\Rightarrow SA=AB=2a\)

Kéo dài MO cắt AB tại N \(\Rightarrow N\) là trung điểm AB \(\Rightarrow MN//BC\Rightarrow MN\perp\left(SAB\right)\)

Do AC cắt (SOM) tại O, mà \(AO=CO\Rightarrow d\left(C;\left(SOM\right)\right)=d\left(A;\left(SOM\right)\right)\)

Từ A kẻ \(AK\perp SN\Rightarrow AK\perp\left(SOM\right)\)

\(\Rightarrow AK=d\left(A;\left(SOM\right)\right)\)

\(\frac{1}{AK^2}=\frac{1}{AN^2}+\frac{1}{SA^2}\Rightarrow AK=\frac{SA.AN}{\sqrt{SA^2+AN^2}}=\frac{2a\sqrt{5}}{5}\)

27 tháng 8 2018

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Kẻ $SH$ vuông góc với $SB$

Vì $SA$ vuông góc với đáy nên \(SA\perp BC\). Tam giác $ABC$ vuông tại $B$ nên \(AB\perp BC\)

Ta có:
\(\left\{\begin{matrix} SA\perp BC\\ AB\perp BC\end{matrix}\right.\Rightarrow (SAB)\perp BC\)

\(AH\subset (SAB)\Rightarrow AH\perp BC\)

Kết hợp với \(AH\perp SB\Rightarrow AH\perp (SBC)\)

Do đó \(d(A,(SBC))=AH\)

Xét tam giác $SAB$ vuông tại $A$ có đường cao $AH$ thì theo hệ thức lượng trong tam giác vuông ta có:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{SA^2}=\frac{1}{a^2}+\frac{1}{a^2}\)

\(\Rightarrow AH=\frac{a\sqrt{2}}{2}\)

Vậy \(d(A,(SBC))=\frac{a\sqrt{2}}{2}\)