Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Đặt $f(x)=x^3+ax+b$. Theo định lý Bezout về dư trong đa thức thì số dư của $f(x)$ cho $x-a$ chính là $f(a)$. Do đó:
\(\left\{\begin{matrix} f(-1)=-1-a+b=7\\ f(3)=27+3a+b=5\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{-15}{2}\\ b=\frac{1}{2}\end{matrix}\right.\)
Vì \(a,b\not\in \mathbb{Z}\Rightarrow \) bài toán đúng với TH $x$ chẵn.
Đặt f(x)=x3+ax+bf(x)=x3+ax+b. Theo định lý Bezout về dư trong đa thức thì số dư của f(x)f(x) cho x−ax−achính là f(a)f(a). Do đó:
{f(−1)=−1−a+b=7f(3)=27+3a+b=5⇒{a=−152b=12{f(−1)=−1−a+b=7f(3)=27+3a+b=5⇒{a=−152b=12
tick đúng
Lời giải:
Bài 1)
Nếu \(p^2-1\in\mathbb{P}\Rightarrow (p-1)(p+1)\in\mathbb{P}\)
Khi đó trong hai thừa số $p-1$ hoặc $p+1$ phải có một thừa số có giá trị bằng $1$, số còn lại là số nguyên tố. Vì $p-1<p+1$ nên \(p-1=1\Rightarrow p=2 \in\mathbb{P} \Rightarrow p+1=3\in\mathbb{P}(\text{thỏa mãn})\)
Khi đó \(8p^2+1=33\) là hợp số. Do đó ta có đpcm.
P/s: Hẳn là bạn chép nhầm đề bài khi thêm dữ kiện $p>3$. Với $p>3$ thì $p^2-1$ luôn là hợp số bạn nhé.
Câu 2:
a) Câu này hoàn toàn dựa vào tính chất của số chính phương
Ta biết rằng số chính phương khi chia $3$ có dư là $0$ hoặc $1$. Mà \(p,q\in\mathbb{P}>3\Rightarrow \) $p,q$ không chia hết cho $3$. Do đó:
\(\left\{\begin{matrix} p^2\equiv 1\pmod 3\\ q^2\equiv 1\pmod 3\end{matrix}\right.\Rightarrow p^2-q^2\equiv 0\pmod 3\Leftrightarrow p^2-q^2\vdots3(1)\)
Mặt khác, vì số chính phương lẻ chia cho $8$ luôn có dư là $1$ nên
\(p^2\equiv 1\equiv q^2\pmod 8\Rightarrow p^2-q^2\equiv 0\pmod 8\Leftrightarrow p^2-q^2\vdots 8\)$(2)$
Từ $(1)$, $(2)$ kết hợp với $(3,8)=1$ suy ra \(p^2-q^2\vdots 24\)
b) Vì \(a,a+k\in\mathbb{P}>3\) nên $a,a+k$ phải lẻ. Do đó $k$ phải chẵn \(\Rightarrow k\vdots 2\) $(1)$
Mặt khác, từ điều kiện đề bài suy ra $a$ không chia hết cho $3$. Do đó $a$ chia $3$ dư $1$ hoặc $2$. Nếu $k$ cũng chia $3$ dư $1$ hoặc $2$ ( $k$ không chia hết cho $3$) thì luôn tồn tại một trong hai số $a+k$ hoặc $a+2k$ chia hết cho $3$ - vô lý vì $a+k,a+2k\in\mathbb{P}>3$
Do đó $k\vdots 3$ $(2)$
Từ $(1)$ và $(2)$ kết hợp $(2,3)=1$ suy ra $k\vdots 6$ (đpcm)
a) 2x2 + x - 18 chia hết cho x - 3
\(\Rightarrow\) (2x . x) + x - 18 chia hết cho x - 3
\(\Rightarrow\) 3x + x - 18 chia hết cho x - 3
\(\Rightarrow\) 4x - 18 chia hết cho x - 3
\(\Rightarrow\) 4x - 12 - 6 chia hết cho x - 3
\(\Rightarrow\) 4(x - 3) - 6 chia hết cho x - 3
\(\Rightarrow\) (-6) chia hết cho x - 3
\(\Rightarrow\) x - 3 \(\in\) Ư(-6) = {-1; -2; -3; -6}
\(\Rightarrow\) x \(\in\) {2; 1; 0; -3}
b) 25 - y2 = 8(x - 2013)2
25 - y . y = 8(x - 2013)(x - 2013)
25 - 2y = 8 - 2(x - 2013)
25 - 2y = 8 - (2x - 2 . 2013)
25 - 2y = 8 - (2x - 4026)
25 - 2y = 8 - 2x + 4026
25 - 2y = (8 + 4026) - 2x
25 - 2y = 4034 - 2x
a) 2x2 + x - 18 chia hết cho x - 3
\(\Rightarrow\) (2x . x) + x - 18 chia hết cho x - 3
\(\Rightarrow\) 3x + x - 18 chia hết cho x - 3
\(\Rightarrow\) 4x - 18 chia hết cho x - 3
\(\Rightarrow\) 4x - 12 - 6 chia hết cho x - 3
\(\Rightarrow\) 4(x - 3) - 6 chia hết cho x - 3
\(\Rightarrow\) (-6) chia hết cho x - 3
\(\Rightarrow\) x - 3 \(\in\) Ư(-6) = {-1; -2; -3; -6}
\(\Rightarrow\) x \(\in\) {2; 1; 0; -3}
b) 25 - y2 = 8(x - 2013)2
25 - y . y = 8(x - 2013)(x - 2013)
25 - 2y = 8 - 2(x - 2013)
25 - 2y = 8 - (2x - 2 . 2013)
25 - 2y = 8 - (2x - 4026)
25 - 2y = 8 - 2x + 4026
25 - 2y = (8 + 4026) - 2x
25 - 2y = 4034 - 2x
Bài 2:
a) Ta có:
\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)
Vậy \(S\) \(\text{⋮}\) \(-20\)
Bài 1:
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)
\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)
\(=\left(-12\right).m^2.3.n^3\)
\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)
Xét: \(m^2\ge0\) với V m
3>0 nên \(m^2.3\ge0\) với V m
Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)
-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)
Vậy với n<0 và mọi m thì \(A\ge0\)
a) Ta có: 3=1.3=(-1).(-3)
TH1: x+1=1 => x=0 và xy-1=3 => 0y=4.( vô lí)=> loại
TH2: x+1=3 =>x=2 và xy-1=1 => xy=2 => 2y=2 => y=1
TH3: x+1= -1 => x=-2 và xy-1= -3 => xy= -2 => -2y=-2 => y=1
TH4: x+1= -3 => x=-4 và xy-1= -1 => xy=0 Suy ra -4y=0 Suy ra y=0.
Vậy (x,y) thuộc {(2;1); (-2;1) ; (-4;0)}
b) Vì lũy thừa cơ số 6 thì luôn luôn tận cùng là 6 vậy 6666= (...6). Tận cùng=6
a) A = 1+32+34+36+...+32006.
2A= (32+32006)+(34+32004)+.....15988 cặp số..+2
= 32038.15988 + 2
= 512223546
Vậy tổng của A = 512223546
Số dư của A chia cho 113= 512223546 - 113.4532951=83 (Đây là cách tính số dư: Số chia - số bị chia x phần nguyên)