Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{3a+4b}{3a-4b}=\frac{3c+4d}{3c-4d}\)
\(\Rightarrow\frac{3a+4b}{3a-4b}-1=\frac{3c+4d}{3c-4d}-1\)
\(\Leftrightarrow\frac{8b}{3a-4b}=\frac{8d}{3c-4d}\)
\(\Rightarrow b\left(3c-4d\right)=d\left(3a-4b\right)\)
\(\Leftrightarrow3bc=3ad\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
b, \(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)
\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
c, \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{2bk+5b}{3bk-4b}=\frac{2dk+5d}{3dk-4d}\)
Xét VT \(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\left(1\right)\)
Xét VP \(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\left(2\right)\)
Từ (1) và (2) ta có Đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có: \(\frac{7a-4b}{3a+5b}=\frac{7bk-4b}{3bk-5b}=\frac{b\left(7k-4\right)}{b\left(3k-5\right)}=\frac{7k-4}{3k-5}\)(1)
\(\frac{7c-4d}{3c+5d}=\frac{7dk-4d}{3dk+5d}=\frac{d\left(7k-4\right)}{d\left(3k+5\right)}=\frac{7k-4}{3k+5}\)(2)
Từ (1) và (2) suy ra \(\frac{7a-4b}{3a+5b}=\frac{7c-4d}{3c+5d}\)(đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{3a^6}{3b^6}=\frac{3a^6+c^6}{3b^6+d^6}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a^6}{b^6}=\frac{c^6}{d^6}=\frac{\left(a+c\right)^6}{\left(b+d\right)^6}\left(2\right)\)
từ (1) và (2) => đpcm
a/c = b /d => 3a/3c = a/c = b/d
=> 4b/4d = b/d = a/c
=> 3a/3c = 4b/4d
A/d t/c day ti so bang nhau ta co :
a/c = b/d = 3a/3c = 4b/4d = 3a-4b / 3c - 4d
=> dpcm