Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)
Từ (1)(2) => đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\Leftrightarrow\frac{bkb}{dkd}=\left(\frac{bk-b}{dk-d}\right)^2\)
Xét VT \(\frac{bkb}{dkd}=\frac{b^2}{d^2}\left(1\right)\)
Xét VP \(\left(\frac{bk-b}{dk-d}\right)^2=\left(\frac{b\left(k-1\right)}{d\left(k-1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) -->Đpcm
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Ta có:
\(a=b.k\)
\(c=d.k\)
Theo bài ra ta có:
\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (1)
\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{b.k-b}{d.k-d}\right)^2=\left[\frac{b.\left(k-1\right)}{d.\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (2)
Từ (1) và (2) suy ra \(\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)
\(\Rightarrowđpcm\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho tỉ lẹ thức \(\frac{a}{b}=\frac{c}{d}\)Chứng minh rằng \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\).
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)
=> \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)(Đpcm)
Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
a) Nhân cả hai vế với b, ta có đpcm
b) Đề sai
c) Nhân cả hai vế với b, ta có đpcm
d) Bạn trên đã làm r , mình k trình bày lại nữa
d,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)
Ta có :
\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\) (1)
\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\) (2)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (3)
Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2012a}{2012c}=\frac{2013b}{2013d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{2012a}{2012c}=\frac{2013b}{2013d}=\frac{2012a+2013b}{2012c+2013d}=\frac{2012a-2013b}{2012c-2013d}\)
\(\Rightarrow\frac{2012a+2013b}{2012a-2013b}=\frac{2012c+2013d}{2012c-2013d}\)
Vậy...
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)=>\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\)=>\(\frac{a^2}{c^2}=\frac{b^2}{c^2}=\frac{ab}{cd}\)
Aps dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
=>\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)
ta có: a/b=c/d=>ad=bc
=>ad=cb=>ab=cd
=>a/c=b/d
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a/c=b/d=(a+b)/(c+d)=ab/cd(đpcm)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) ; \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}\)\(=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{a-c}{b-d}\)\(\left(đpcm\right)\)
ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)=k
\(\Rightarrow\)a=bk;c=dk
ta có:\(\frac{a.b}{cd}\)=\(\frac{bk.b}{dk.d}\)=\(\frac{kb^2}{kd^2}\)=\(\frac{b^2}{d^2}\)
ta có:\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{k^2.b^2+b^2}{k^2.d^2+d^2}\)=\(\frac{b^2(k+1)}{d^2(k+1)}\)=\(\frac{b^2}{d^2}\)
vậy:\(\frac{a^2+b^2}{c^2+d^2}\)\(=\)\(\frac{ab}{cd}\)