K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=b.k\\c=d.k\end{cases}\)

Ta có:

\(\frac{a+b}{a-b}=\frac{b.k+b}{b.k-b}=\frac{b.\left(k+1\right)}{b.\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{d.k+d}{d.k-d}=\frac{d.\left(k+1\right)}{d.\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

 

28 tháng 9 2016

ảm ơn nhưng mik làm rồi

mik hỏi chơi thôi

cho đỡ chán

 

5 tháng 12 2017

a,Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)\(\Rightarrowđpcm\)

b,Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)\(\Rightarrowđpcm\)

4 tháng 9 2021

Nhnh hộ mìn nha cám ơn nhiều ạ!

1 tháng 9 2021

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)(*)

Ta có: (a + 2c)(b + d) = (a + c)(b + ad)

\(\Leftrightarrow\)ab + ad + 2bc + 2cd = ab + 2ad + bc + 2cd

\(\Leftrightarrow\)ab + ad + 2bc + 2cd - ab - 2ad - bc - 2cd = 0

\(\Leftrightarrow\)ad + bc = 0 \(\Leftrightarrow\) bc - ad = 0 \(\Leftrightarrow\) ad = bc \(\Rightarrow\)(*) luôn đúng => ĐPCM

31 tháng 8 2015

Theo bai ra ta co

a/b=c/d

=> a/c=b/d=a+b/c+d=a-b/c-d

=> a-b/a+b = c-d/c+d 

Lik-e ung ho nhe dung tiec lik-e hom nay

8 tháng 12 2018

Ta có :\(\frac{a}{b}\)=\(\frac{c}{d}\)

\(\Rightarrow\)1-\(\frac{a}{b}\)= 1- \(\frac{c}{d}\)

\(\Rightarrow\)\(\frac{b-a}{b}\)\(\frac{d-c}{d}\)(đpcm)

8 tháng 12 2018

thanks bạn

DD
6 tháng 8 2021

\(\frac{a}{b}=\frac{c}{d}\)(\(b,d\ne0\))

\(\Leftrightarrow ad=bc\)

\(\Leftrightarrow2ad=2bc\)

\(\Leftrightarrow ad-bc=bc-ad\)

\(\Leftrightarrow ad-bc+ac-bd=bc-ad+ac-bd\)

\(\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(\(a-b,c-d\ne0\))