K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

a) Xét tam giác ADB và AEC có:

AD = AE (gt)

AB = AC (gt)

Góc A chung

\(\Rightarrow\Delta ADB=\Delta AEC\left(c-g-c\right)\Rightarrow BD=CE\)

b) Do AB = AC; AD = AE nên BE = DC

Xét tam giác CEB và BDC có:

CE = BD (cma)

Cạnh BC chung

BC = CD (cmt)

\(\Rightarrow\Delta CEB=\Delta BDC\left(c-c-c\right)\)

c) Do \(\Delta ADB=\Delta AEC\Rightarrow\widehat{EBI}=\widehat{DCI}\)

Do \(\Delta CEB=\Delta BDC\Rightarrow\widehat{BEI}=\widehat{CDI}\)

Xét tam giác BIE và tam giác CID có:

\(\widehat{EBI}=\widehat{DCI}\)

\(\widehat{BEI}=\widehat{CDI}\)

BE = CD

\(\Rightarrow\Delta BIE=\Delta CID\left(g-c-g\right)\)

d) Do \(\Delta BIE=\Delta CID\Rightarrow IB=IC\)

Lại có AB = AC nên IA là trung trực của BC

Vậy IA đi qua trung điểm F của BC hay A, I, F thẳng hàng.

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath

3 tháng 11 2019

câu trả lời là gì

29 tháng 2 2020

Bài này easy lắm bạn

B A C D E F I Hình ảnh chỉ mang tính chất minh họa

a) Xét \(\Delta\) ABD và \(\Delta\)ACE có

AB = AC ( gt)

\(\widehat{BAC}\) : góc chung

AD = AE ( gt)

=> \(\Delta\)ABD = \(\Delta\) ACE  (c-g-c)

=> BD = CE  ( 2 cạnh tương ứng )

+) Ta có \(\hept{\begin{cases}AB=AC\left(gt\right)\\AE=AD\left(cmt\right)\end{cases}}\)

\(\Rightarrow AB-AE=AC-AD\)

\(\Rightarrow\)BE = CD 

+) Xét \(\Delta\)CEB và \(\Delta\)BDC có

CE = BD ( cmt)

EB = DC ( cmt)

CB: cạnh chung

=> \(\Delta\)CEB = \(\Delta\) BDC  (c-c-c)

2 câu này đã nhé

12 tháng 12 2016

A B C E D F I

 

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath

a) Xét ΔABD và ΔACE có

AB=AC(ΔABC cân tại A)

\(\widehat{A}\)chung

AD=AE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

⇒BD=CE(hai cạnh tương ứng)

b) Ta có: AE+EB=AB(do A,E,B thẳng hàng)

AD+DC=AC(do A,D,C thẳng hàng)

mà AB=AC(ΔABC cân tại A)

và AE=AD(gt)

nên EB=DC

Xét ΔCEB và ΔBDC có

EC=BD(cmt)

BC chung

EB=DC(cmt)

Do đó: ΔCEB=ΔBDC(c-c-c)

c) Xét ΔEIB và ΔDIC có

\(\widehat{BEI}=\widehat{CDI}\)(ΔCEB=ΔBDC)

BE=DC(cmt)

\(\widehat{EBD}=\widehat{DCI}\)(ΔABD=ΔACE)

Do đó: ΔEIB=ΔDIC(g-c-g)

d) Xét ΔAEI và ΔADI có

AE=AD(gt)

EI=ID(ΔEIB=ΔDIC)

AI là cạnh chung

Do đó: ΔAEI=ΔADI(c-c-c)

\(\Rightarrow\widehat{EAI}=\widehat{DAI}\)(hai góc tương ứng)

mà tia AI nằm giữa hai tia AE,AD

nên AI là tia phân giác của \(\widehat{EAD}\)

hay AI là tia phân giác của \(\widehat{BAC}\)

Ta có: AF là đường trung tuyến ứng với cạnh đáy BC của ΔABC cân tại A(F là trung điểm của BC)

nên AF cũng là đường phân giác ứng với cạnh BC(định lí tam giác cân)

hay AF là tia phân giác của \(\widehat{BAC}\)

mà AI là tia phân giác của \(\widehat{BAC}\)(cmt)

và AF và AI có điểm chung là A

nên A,F,I thẳng hàng(đpcm)

24 tháng 2 2020

!

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0