K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

hình vẽ đấy nhé

GIAI

a ) xét tam giác AMB và tam giác CMN có

AM = MC ( M là trung điểm của AC )

góc AMB = goc CMN ( đối đỉnh )

MB = MN ( M là trung điểm của BN )

=> tam giác AMB = tam giác CMN ( c.g.c)

=> AB = CN ( 2 cạnh tương ứng )

=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )

=> CN vuông góc với AC (dpcm )

b ) chúng minh tương tự

=> tam giác ANM = tam giác CBM ( c.g.c )

=> AN = BC ( 2 cạnh tương ứng )

=> góc ANM = góc CBM ( 2 góc tương ứng )

mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC

=> AN song song BC ( dpcm)

10 tháng 1 2017

a) Xét tam giác BMA và tam giác CMN:

  BM=MC ( M là trung điểm của BC)

  \(\widehat{BMA=\widehat{CMN}}\)(2 góc đối đỉnh)

AM=MN ( M là trung điểm của AN)

=>Tam giác BMA=tam giác CMN(c-g-c)

 =>\(\widehat{ABM}\)=\(\widehat{MCN}\)(2 góc tương ứng)

mà chúng nằm ở vị trí so le trong

 =>BA//NC

b) CM cho AN=BC =>Am=\(\frac{1}{2}\)BC

10 tháng 1 2018

A B M N C 1 2

 Xét ΔAMB và ΔNMC có :

MA=MN ( gt)

\(\widehat{M_1}\)\(\widehat{M_2}\)(2 góc đối đỉnh )

MB =MC (gt)

Suy ra: ΔAMB=ΔNMC(c.g.c)

⇒ CN = AB ( 2 cạnh tương ứng )

⇒ \(\widehat{NCM}=\widehat{ABM}\)( 2 góc tương ứng ) ⇒ CN // AB ( vì có cặp góc so le trong bằng nhau )

22 tháng 10 2021

a: Xét ΔCMN và ΔAMB có 

MC=MA

\(\widehat{CMN}=\widehat{AMB}\)

MN=MB

Do đó: ΔCMN=ΔAMB

Suy ra: \(\widehat{MCN}=\widehat{MAB}\) và CN=AB

hay CN\(\perp\)AC

29 tháng 7 2016

Hỏi đáp Toán

29 tháng 7 2016

Bạn tự vẽ hình nhé!

a,  Xét tam giác AMB và NMC có:

     AM=NM  (gt)

     BM=CM  (gt)

     Góc AMB=NMC (đối đỉnh)

=> Tg AMB=NMC (c.g.c)  => AB=CN

+)  Tg AMB=NMC => Góc ABM=MCN

Mà hai góc trên so le trong => AB//CN

b, Xét Tg ABC và CNA có:

BAC=NCA (=90o;  do AB//CN)

AC chung

AB=CN

=> Tg ABC=CNA  (c.g.v)  => AN=BC

Mà AM=AN.1/2  => AM=BC.1/2

(Nếu sai thì bạn nhắc mk nhé, chúc bạn học tốt!^^)

27 tháng 11 2015

tick trước đi r mik giải cho

bài nay dễ ồm hè bạn

5 tháng 12 2015

b/ Xét tam giác AMN và tam giác CMB có:

BM=MN(cmt)

AM=MC(cmt)

Góc AMN= góc CMB( đối đỉnh)

Vậy tam giác AMN = tam giác CMB(c-g-c)

=> AN=BC(hai canh tương ứng)

góc BCM=góc MAN(2 góc tương ứng)

Do góc BCM và góc MAN là cặp góc so le trong bằng nhau nên AN//BC

17 tháng 12 2017

A B C N M

a, Xét t/g AMB và t/g CMN có:

AM=CM(gt)

MB=MN(gt)

góc AMB=góc CMN (đối đỉnh)

=> t/g AMB=t/g CMN (c,g.c)

=> góc MAB = góc MCN = 90 độ (2 góc t/ứ) ; AB = CN (2 cạnh t/ứ)

=> CN _|_ AC

b, Xét t/g AMN và t/g CMB có:

AM=CM(gt)

MN=MB(gt)

góc AMN=góc CMB (đối đỉnh)

=> t/g AMN = t/g CMB (c.g.c)

=> AN = BC (2 cạnh t/ứ) ; góc ANM = góc CBM (2 góc t/ứ)

=> AN//BC (vì có 2 góc so le trong bằng nhau)

17 tháng 12 2017

M B A C N A) Xét tam giác BAM và tam giác NCM ta có

AM = MC (gt)

\(\widehat{CMN}\)\(\widehat{AMB}\) (hai góc đối đỉnh)   

BM=MN (gt)

\(\Rightarrow\)\(\bigtriangleup\)BAM=\(\bigtriangleup\)NCM

\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{NCM}\)

mà \(\widehat{BAM}\)=90độ \(\Rightarrow\)\(\widehat{NCM}\)=90độ

B) xét tam giác BAC và tam giác NCA ta có

NC=BA (hai cạnh tương ứng)

ACM=BAC 

AC cạnh chung

\(\Rightarrow\)tam giác BAC = tam giác NAC

\(\Rightarrow\)AN=BC (hai cạnh tương ứng)

    Vì góc BAC và góc NCA là hai góc so le trong mà lại nhau

\(\Rightarrow\)AN \\ BC

nha