Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABH và tam giác ACH có:
góc ABH = góc ACH ( tam giác ABC cân tại A)
AH chung
góc BAH = góc CAH ( đường phân giác AH)
=> tam giác ABH = tam giác ACH(g.c.g)
b,Xét tam giác AKH và tam giác AIH có:
góc KAH = góc IAH (đường phân giác AH)
AH chung
góc HKA = góc HIA = 90 độ
=> tam giác AKH = tam giác AIH(g.c.g)
=> HK = HI ( 2 cạnh tương ứng )
Vì AH là đường phân giác trong tam giác ABC cân tại A
=> AH là đường cao của tam giác ABC => AH vuông với BC
=> AH là đường trung tuyến của tam giác ABC=>BH=CH
Xét tam giác BHK và tam giác CHI có:
góc HBK = góc HCI ( tam giác ABC cân tại A)
KH = IH( chứng minh trên )
góc BKH = góc CIH = 90 độ
=>tam giác BHK = tam giác CHI(g.c.g)
=>BK=CI(2 cạnh tương ứng)
c,chứng minh j kia bạn
xét ΔABH và ΔACH có:
\(\widehat{ACB}\)=\(\widehat{ABC}\)(ΔABC cân tại A)
\(\widehat{BAH}\)=\(\widehat{CAH}\)(AH là tia phân giác của\(\widehat{BAC}\))
AB=AC(ΔABC cân tại A)
⇒ΔABH=ΔACH(g-c-g)
xét ΔABM và ΔCEM có:
\(\widehat{AMB}\)=\(\widehat{EMC}\)(2 góc đối đỉnh)
AM=MC(M là trung điểm của AC)
BM=ME(giả thuyết)
⇒ΔABM=ΔCEM(c-g-c)
⇒\(\widehat{BAM}\)=\(\widehat{MCE}\)(2 góc tương ứng)
⇒CE//AB(điều phải chứng minh)
⇒\(\widehat{BAH}\)=\(\widehat{CKH}\)(2 góc sole trong)(1)
Mà \(\widehat{BAH}\)=\(\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))(2)
Từ (1) và (2) ⇒\(\widehat{CAH}\)=\(\widehat{CKH}\)
⇒ΔACK cân tại C(điều phải chứng minh)
vì AH là tia phân giác của \(\widehat{BAC}\)
Mà ΔABC cân tại A
⇒AH là đường trung tuyến
Mặc khác M là trung điểm của AC nên BM là đường trung tuyến
Mà G là giao điểm của BM và AH
⇒G là trọng tâm của ΔABC
xét ΔABH và ΔKCH có:
BH=CH(AH là đường trung tuyến)
\(\widehat{ABH}\)=\(\widehat{KCH}\)(2 góc sole trong)
\(\widehat{AHB}\)=\(\widehat{KHC}\)=\(90^o\)
⇒ΔABH=ΔKCH(g-c-g)
Mà ΔABH=ΔACH
⇒ΔKCH=ΔACH
xét ΔAHC có:
AH+HC>AC(bất đẳng thức tam giác)
Mà AH=3GH; AC=CK(ΔKCH=ΔACH)
⇒3GH+HC>CK(điều phải chứng minh)
1) d) Ta có: \(\Delta\)KHC cân tại H
=> HK = CK
=> AB = AC = 2Ck = 2HK
=> AB = 2 HK
Ta có:
Qua H kẻ đường thẳng // với HA cắt AB tại T
Xét \(\Delta\)KHA và \(\Delta\)ATK có:
AK chung
^HKA = ^TAK ( so le trong )
^HAK = ^TKA ( so le trong )
=> \(\Delta\)KHA = \(\Delta\)ATK
=> AT = HK và KT = HA
=> AB = 2HK = 2AT
Khi đó: AH + BK = KT + BK > BT = AB + AT
=> 2 ( AH + BK ) > 2 AB + 2AT = 2AB + AB = 3AB
Vậy 2 ( AH + BK) > 3AB
2) M I D E A P Q B C H
a)
- Xét \(\Delta\)ADC và \(\Delta\)ABE có:
AD = AB ( \(\Delta\)ADB cân tại A )
AC = AE ( \(\Delta\)ACE cân tại E)
^DAC = ^BAE ( vì ^DAC = ^DAB + ^BAC = 90o + ^BAC ; ^BAE = ^BAC + ^CAE = ^BAC + 90o )
=> \(\Delta\)ADC = \(\Delta\)ABE (1)
=> CD = EB
- Gọi P; Q lần lượt là giao điểm của DC và BA và BE
(1) => ^ADC = ^ABE => ^ADP = ^PBQ (2)
Xét \(\Delta\)APD và \(\Delta\)PQB
có: ^APD + ^ADP + ^PAD = ^PQB + ^PBQ + ^QPB = 180 độ ( tổng 3 góc trong 1 tam giác )
mà ^ADP = ^PBQ (theo (2)) ; ^APD = ^QPB ( đối đỉnh)
=> ^PQB = ^PAD = ^BAD = 90 độ ( \(\Delta\)ABD vuông )
=> DC vuông BE
b) Trên mặt phẳng bờ DE không chứa A, qua D kẻ tia Dx // AE. Trên Dx lấy điểm M sao cho DM = AE
Gọi giao điểm của DE và MA là I
Dễ dàng chứng minh được: \(\Delta\)DIM = \(\Delta\)EIA (3)
=> DM = AE = AC
Lại có: ^MDA + ^DAE = ^MDE + ^EDA + ^DAE = ^DEA + ^EDA + ^DAE = 180 độ
mà ^DAE + ^BAC = 180 độ
=> ^MDA = ^BAC
Xét \(\Delta\)ABC và \(\Delta\)DAM có: AB = DA ; AC = DM ; ^BAC = ^ADM
=> \(\Delta\)ABC = \(\Delta\)DAM
=> ^DAM = ^ABC
=> ^DAM + ^DAB + ^BAH = ^ABC + 90o + ^BAH = 180 độ
=> M; I; A; H thẳng hàng
=> AH cắt DE tại I
(3) => ID = IE => I là trung điểm của DE
Do vậy AH đi qua trung điểm của DE
a) Ta có: AB < AC
=> ACB < ABC
ABH = 90 - 60 = 30o
b) DAC = DAB = 90 - (A/2) = 90 - 30 = 60o
ABI = 90 - 30 = 60
Xét 2 tam giác vuông AIB và BHA có: AB (chung)
Ta có: BAH = ABD = 60 (cmt)
=> AIB = BHA (ch - gn)
c) Theo câu a), ta có: Tam giác AIB = BHA (ch - gn)
=> AIB = BHA = 60o
=> BEA = 180 - 60 - 60 = 60o
Có: ABE = BEA = EAB = 60
=> Tam giác ABE là tam giác đều.
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có: AB = AE
EAD = DAB = 30o
Cạnh AD chung.
=> Tam giác ADB = tam giác ADC (c.g.c)
=> DB = DB (1) và góc ABD = góc AED
Do đó:
CBx = CED (cùng kề bù với 2 góc = nhau)
CBx > C
=> DC > DE (2)
Từ (1); (2) => DC > DB