K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án:

 nhìn dưới :3

Giải thích các bước giải:

Dựng tam giác vuông  DBM cân tại B sao cho D và A nằm trên 2 nửa mặt  phẳng khác nhau bờ BC ,,, suy ra tam giác ADC đồng dạng vs tam giác BMC theo c-g-c

suy ra góc BCM = góc ACD ,,, suy ra góc DCM = góc ACB và CABC=CDCMCABC=CDCM ,,,, Do đó tam giác ABC đồng dạng vs tam giác DMC theo g-c-g

Rút tỉ cạnh số ta có q.e.d

22 tháng 2 2021

Cho mình hỏi cái câu cuối nghĩa là gì vậy 

27 tháng 7 2018

a, Xét tam giác ADB và tam giác CDI có:

                     góc ADB = góc CDI (đối đỉnh)

                     góc BAD = góc DCI (gt)

Do đó: Tam giác ADB đồng dạng với tam giác CDI (g.g) (1)

Suy ra: góc ABD = góc DIC

b, Tam giác ADB đồng dạng với tam giác ACI (g.g) (2)

Suy ra: AD/AC = AB/AI

c, Từ (1),ta thấy: AD/CD = DB/DI nên AD.DI = BD.BC

Từ (2),ta có: AD/AC = AB/AI nên AD.AI = AB.AC

Do đó: AD(AI-DI) = AB.AC - BD.BC

           AD^2 = AB.AC -BD.BC

Bài bạn đưa ra hơi khó đấy.Chúc bạn học tốt.

28 tháng 7 2018

Cảm ơn bn nhiều lắm :3

12 tháng 3 2016

1) coi lại đề

2) a) tam giác ABD và tam giác ABC có

góc A=góc A, góc ABD=góc ACB

=> tam giác ABD đồng dạng tam giác ACB (g-g)

b) ta có tam giác ABD đồng dạng tam giác ACB=> AB/AC=AD/AB=> 6/9=AD/6=> AD=(6.6):9=4

5 tháng 4 2019

a, theo định lý pitago tính đc BC

sau đó xét tam giác đồng dạng ABH và CBA là tìm đc AH

hok tốt

15 tháng 5 2020

Theo định lý py ta go ta có

BC2=AC2+AB2 Hay BC2=289 => BC=17

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=18^2+20^2=724\)

hay \(BC=2\sqrt{181}cm\)

Vậy: \(BC=2\sqrt{181}cm\)

6 tháng 2 2018

Bài 1:

Áp dụng tính chất đường phân giác của tam giác ta có:

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)

\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)

Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)

\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)

Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)

b)\(\text{Ta có:}\)

\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)

\(\Rightarrow AE=8cm,EC=10cm\)

5 tháng 2 2018

bn ơi bài 1 ý a)  chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu