K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) Vì AH vuông góc với BC

=> Tam giác AHC vuông ở H.

=> \(\widehat{HAC}+\widehat{C}=90^0\)                                 (1) 

Vì HN vuông góc với AC

=> Tam giác HNC vuông ở N

=> \(\widehat{NHC}+\widehat{C}=90^0\)                             (2)

Từ (1) và (2) => \(\widehat{HAC}=\widehat{NHC}\)

Xét tam giác AHN và tam giác ACH có:

\(\widehat{ANH}=\widehat{HNC}\left(=90^0\right)\)

\(\widehat{HAC}=\widehat{NHC}\)

=> Tam giác AHN ~ tam giác ACH ( g - g )

b) Xét tam giác AHB vuông ở H,

Theo định lí Thales có:

\(AB^2=AH^2+HB^2\)

Hay \(15^2=12^2+HB^2\)

\(\Rightarrow225=144+HB^2\)

\(\Rightarrow HB^2=81\)

\(\Rightarrow HB=9\left(cm\right)\)

Xét tam giác AHC vuông ở H có:

\(AC^2=AH^2+HC^2\)

hay \(13^2=12^2+HC^2\)

\(\Rightarrow169=144+HC^2\)

\(\Rightarrow HC^2=25\left(cm\right)\)

\(\Rightarrow HC=5\left(cm\right)\)

Ta có: HB + HC = BC

hay 9 + 5 = BC

=> BC = 14 ( cm )

8 tháng 5 2018

Tam giác AHN đồng dạng với tam giác ACH ( tự chứng minh )

\(\Rightarrow\frac{AH}{AC}=\frac{AN}{AH}\Rightarrow AH^2=AN.AC\left(1\right)\)

 tam giác AHB đồng dạng với tam giác AMH ( Tự chứng minh )

\(\Rightarrow\frac{AH}{AM}=\frac{AB}{AH}\Rightarrow AH^2=AB.AM\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra AB.AM = AN.AC

\(\Rightarrow\frac{AC}{AB}=\frac{AM}{AN}\)

Xét tam giác AMN và tam giác ACB có:

\(\widehat{MAN}\)chung 

\(\frac{AM}{AN}=\frac{AC}{AB}\left(cmt\right)\)

Suy ra tam giác AMN đồng dạng với tam giác ACB ( c-g-c )

b) Áp dụng định lý PITAGO tính ra BH và CH 

rồi tiếp tục tính tiếp BC 

8 tháng 5 2018

- bạn ơi

- Chứng minh ngay luôn hộ mình để mình còn gửi bài cho cô nè. mình không có time đâu bạn

1 tháng 4 2020

B H M A C N

( Hình ảnh chỉ mang tính chất minh họa )

a) Tính BC và AH :

Tam giác ABC vuông tại A, áp dụng định lý Pytago vào tam giác ABC :

AB2+AC2=BC2AB2+AC2=BC2

82+152=BC282+152=BC2

BC=17(cm)⇒BC=17(cm)

Ta có : SABC=12ABAC=12AHBCSABC=12⋅AB⋅AC=12⋅AH⋅BC

AH=ABACBC=81517=12017(cm)⇔AH=AB⋅ACBC=8⋅1517=12017(cm)

b) Có Aˆ=900A^=900(giả thiết), Mˆ=900M^=900(hình chiếu), Nˆ=900N^=900(hình chiếu)

=> Tứ giác AMHN là hình chữ nhật (tứ giác có 3 góc bằng 90 độ).

Vì tứ giác AMHN là hình chữ nhật => Hai đường chéo bằng nhau.

MN=AH=12017(cm)⇒MN=AH=12017(cm)

c) Vì N là hình chiếu của H trên AC NAC⇒N∈AC

mà MHMH//AN(hcn)AN(hcn) => MHMH//ACAC

Theo hệ quả của định lý Ta-let => AMAB=ANACAMAB=ANAC

Suy ra : AMAC=ANAB(đpcm)

a: Xét ΔAHN vuông tại N và ΔACH vuông tại H có

góc HAN chung

=>ΔAHN đồng dạng với ΔACH

b: ΔAHN đồng dạng với ΔACH

=>AH/AC=AN/AH

=>AH^2=AN*AC

c: Xét ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2=AN*AC

d: AM*AB=AN*AC

=>AM/AC=AN/AB

=>ΔAMB đồng dạng với ΔACN