K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔNMI và ΔNEI co

NM=NE

góc MNI=góc ENI

NI chung

=>ΔNMI=ΔNEI

=>IM=IE

=>ΔIME cân tại I

2: góc KME+góc NEM=90 độ

góc PME+góc NME=90 độ

mà góc NEM=góc NME

nên góc KME=góc PME

=>ME là phân giác của góc KMP

3: góc MIQ=90 độ-góc MNI

góc MQI=góc NQK=90 độ-góc PNI

mà góc MNI=góc PNI

nên góc MIQ=góc MQI

=>ΔMIQ cân tại M

4: Xét ΔIMF vuông tại M và ΔIEP vuông tại E có

IM=IE

góc MIF=góc EIP

=>ΔIMF=ΔIEP

=>MF=EP

Xét ΔNFP có NM/MF=NE/EP

nên ME//FP

22 tháng 2 2023

thanks you bạn

 

a: MP=12cm

b: Xét ΔNMD và ΔNED có 

NM=NE

\(\widehat{MND}=\widehat{END}\)

ND chung

Do đó:ΔNMD=ΔNED

Suy ra: DM=DE
hay ΔDME cân tại D

a) Xét ΔNAM vuông tại M và ΔNDA vuông tại D có 

NA chung

NA=ND(gt)

Do đó: ΔNAM=ΔNDA(cạnh huyền-cạnh góc vuông)

\(\widehat{MNA}=\widehat{DNA}\)(hai góc tương ứng)

mà tia NA nằm giữa hai tia NM,NDnên NA là tia phân giác của \(\widehat{NMD}\)hay NA là tia phan giác của \(\widehat{NMP}\)(đpcm)b) Xét ΔNMD có NM=ND(gt)nên ΔNMD cân tại N(Định nghĩa tam giác cân)Xét ΔNMD cân tại N có \(\widehat{MND}=60^0\)(gt)nên ΔNMD đều(Dấu hiệu nhận biết tam giác đều)c) Ta có: ΔNMP vuông tại M(gt)nên \(\widehat{NMP}+\widehat{MPN}=90^0\)(hai góc nhọn phụ nhau)\(\Leftrightarrow\widehat{MPN}=90^0-\widehat{NMP}=90^0-60^0=30^0\)(1)Ta có: NA là tia phân giác của \(\widehat{MNP}\)(cmt)nên \(\widehat{PNA}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^0}{2}=30^0\)(2)Từ (1) và (2) suy ra \(\widehat{APN}=\widehat{ANP}\)Xét ΔANP có \(\widehat{APN}=\widehat{ANP}\)(cmt)nên ΔANP cân tại A(Định lí đảo của tam giác cân)Ta có: ΔANP cân tại A(gt)mà AD là đường cao ứng với cạnh đáy NP(gt)nên AD là đường trung tuyến ứng với cạnh NP(Định lí tam giác cân)hay D là trung điểm của NP(đpcm)

a: NP^2=MN^2+MP^2

=>ΔMNP vuông tại M

b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có

ND chung

góc MND=góc END

=>ΔNMD=ΔNED

=>DM=DE