Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F E M D N P
a) Xét\(\Delta FEPvà\Delta DEMcó\)
EF=ED(giả thiết)
\(\widehat{FEP}=\widehat{DEM}\) ( 2 góc đối đỉnh )
EP=EM ( vì E là trung điểm của PM)
\(\Rightarrow\Delta FEP=\Delta DEM\left(c-g-c\right)\)
\(\Rightarrow\widehat{PFE}=\widehat{MDE}\) ( 2 góc tương ứng)
hay \(\widehat{PFD}=\widehat{MDF}\) mà 2 góc này là 2 góc so le trong của đường thẳng FD cắt 2 đường thẳng FP và MD
\(\Rightarrow FP//MD\)
vậy \(FP//MD\)
b) ta có \(\Delta FEP=\Delta DEM\) (chứng minh câu a)
\(\Rightarrow FD=DM\) ( 2 cạnh tương ứng )
mà MD=ND (vì D là trung điểm của MN )
\(\Rightarrow DN=FP\)
vậy DN=FP
c) nối F và N
ta có \(MD//FP\) \(hay\) \(MN//FP\Rightarrow\widehat{PFN}=\widehat{DNF}\) ( 2 góc so le trong )
Xét\(\Delta PFNvà\Delta DNFcó\)
PF=DN (chứng minh câu b )
\(\widehat{PFN}=\widehat{DNF}\) (chứng minh trên )
FN là cạnh chung
\(\Rightarrow\Delta PFN=\Delta DNF\left(c-g-c\right)\)
\(\Rightarrow DF=NP\) ;
\(\widehat{DFN}=\widehat{PNF}\) mà 2 góc này là 2 góc so le trong của đường thẳng FN cắt 2 đường thẳng FD và NP
\(\Rightarrow FD//NP\)
vậy FD//NP
ΔDEF=ΔMNP
nên DE=MN; EF=NP; DF=MP
EF+FD=10 nên NP+MP=10
mà NP-MP=2
nên NP=6; MP=4
DE=MN=3cm
NP=EF=6cm
MP=DF=4cm
a, Trong tam giác MNP vuông tại N,có:
MP2=MN2+NP2(ĐL: Py-ta-go)
Hay: 252=202+NP2
=> NP2=252 - 202
NP2 = 225
=> NP= 15 (cm)
b,Ta có: 262=102+242
Hay: EF2=DE2+DF2
Theo ĐL : Py-ta-go đảo,ta có ; tam giác DEF vuông tại D
=.= hk tốt!!
a) Áp dụng định lí Py - ta - go vào \(\Delta MNP\)vuông tại N:
MP2 = NP2 + MN2
252 = NP2 + 202
=> NP2 = 625 - 400
=> NP2 = 225
=> NP = 15cm
b) Ta có :
EF2 = 262 = 676
DE2 + DF2 = 102 + 242 = 676
=> EF2 = DE2 + DF2
Vậy \(\Delta EDF\) là tam giác vuông tại D
Chọn A
MN = DE; MP= DF; NP = EF.