Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)ANM và \(\Delta\)ABM có :
- MN = MB ( gt )
- Góc AMN = góc AMB ( vì MA là phân giác )
- MA : cạnh chung
\(\Rightarrow\)\(\Delta\)ANM = \(\Delta\)ABM ( c . g . c )
\(\Rightarrow\)AN = AB ( hai cạnh tương ứng )
b) Gọi giao điểm giữa NB và MA là I
Xét \(\Delta\)INM và \(\Delta\)IBM có :
- MN = MB ( gt )
- Góc IMN = góc IMB ( vì MI là phân giác )
- MI : cạnh chung
\(\Rightarrow\)\(\Delta\)INM = \(\Delta\)IBM ( c . g . c )
\(\Rightarrow\)Góc MIN = góc MIB ( hai góc tương ứng )
Mà góc MIN + góc MIB = 180 ( do kề bù )
nên góc MIN = góc MIB = 180 ÷ 2 = 90 độ hay NB vuông góc với MA .
a) Ta có: \(\widehat{MNP}+\widehat{MNA}=180^0\)(hai góc kề bù)
\(\widehat{MPN}+\widehat{MPB}=180^0\)(hai góc kề bù)
mà \(\widehat{MNP}=\widehat{MPN}\)(hai góc ở đáy của ΔMNP cân tại M)
nên \(\widehat{MNA}=\widehat{MPB}\)
Xét ΔMNA và ΔMPB có
MN=MP(ΔMNP cân tại M)
\(\widehat{MNA}=\widehat{MPB}\)(cmt)
AN=PB(gt)
Do đó: ΔMNA=ΔMPB(c-g-c)
Suy ra: MA=MB(hai cạnh tương ứng)
Xét ΔMAB có MA=MB(cmt)
nên ΔMAB cân tại M(Định nghĩa tam giác cân)
b) Sửa đề: PE vuông góc với MB
Ta có: ΔMAN=ΔMBP(cmt)
nên \(\widehat{AMN}=\widehat{BMP}\)(hai góc tương ứng)
hay \(\widehat{DMN}=\widehat{EMP}\)
Xét ΔMDN vuông tại D và ΔMEP vuông tại E có
MN=MP(ΔMNP cân tại M)
\(\widehat{DMN}=\widehat{EMP}\)(cmt)Do đó: ΔMDN=ΔMEP(cạnh huyền-góc nhọn)
Suy ra: MD=ME(hai cạnh tương ứng)
c) Xét ΔMDE có MD=ME(cmt)
nên ΔMDE cân tại M(Định nghĩa tam giác cân)
\(\Leftrightarrow\widehat{MDE}=\dfrac{180^0-\widehat{DME}}{2}\)(Số đo của một góc ở đáy trong ΔMDE cân tại M)
hay \(\widehat{MDE}=\dfrac{180^0-\widehat{AMB}}{2}\)(1)
Ta có: ΔMAB cân tại M(cmt)
nên \(\widehat{MAB}=\dfrac{180^0-\widehat{AMB}}{2}\)(Số đo của một góc ở đáy trong ΔMAB cân tại M)(2)
Từ (1) và (2) suy ra \(\widehat{MDE}=\widehat{MAB}\)
mà \(\widehat{MDE}\) và \(\widehat{MAB}\) là hai góc ở vị trí đồng vị
nên DE//AB(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔMNA và ΔMBA có
MN=MB
góc NMA=gócBMA
MA chung
Do đó: ΔMNA=ΔMBA
=>AN=AB
b: MN=MB
AN=AB
=>MA là trung trực của NB
=>MA vuông góc với NB
c: Xét ΔMCP có MN/MC=MB/MP
nên NB//CP
d: Xét ΔANC và ΔABP có
AN=AB
góc ANC=góc ABP
NC=BP
Do đó: ΔANC=ΔABP
=>góc NAC=góc BAP
=>góc NAC+góc NAB=180 độ
=>B,A,C thẳng hàng
a: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường cao
b: Xét tứ giác MNQP có
I là trung điểm của MQ
I là trung điểm của NP
Do đó: MNQP là hình bình hành
Suy ra: MN//PQ
c: Xét tứ giác MEQF có
ME//QF
ME=QF
Do đó: MEQF là hình bình hành
Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MQ
nên I là trung điểm của FE
hay E,I,F thẳng hàng
a) xét ΔMPI và ΔMNI có:
\(\widehat{MIN}=\widehat{MIP}=90^o\)
MN=MP(ΔMNP cân tại M)
\(\widehat{MNI}=\widehat{MPI}\)(ΔMNP cân tại M)
⇒ΔMPI=ΔMNI(c.huyền.g.nhọn)
⇒IN=IP(2 cạnh tương ứng)
hay I là trung điểm của NP(đ.p.ch/m)
vì ΔMPI=ΔMNI nên \(\widehat{PMI}=\widehat{NMI}\)(2 góc tương ứng)
hay MI là phân giác của \(\widehat{PMN}\)
⇒điểm I cách đều 2 cạnh MN và MP(đ.p.ch/m)
b)Ta có: \(\widehat{MNI}+\widehat{MNA}=180^o\) (2 góc kề bù)
Mặc khác \(\widehat{MPI}+\widehat{BPI}=180^o\)(2 góc kề bù)
Mà \(\widehat{MNI}=\widehat{MPI}\)
Do đó: \(\widehat{MNA}=\widehat{BPI}=180^o-\widehat{MNI}\)
Vì I là trung điểm của NP⇒NI=PI
Mà NI=NA
⇒NA=PI
vì ΔMNP cân tại M ⇒MN=MP
Mà BP=MP ⇒BP=MN
xét ΔMNA và ΔBPI có:
\(\widehat{MNA}=\widehat{BPI}\)(ch/m trên)
NA=PI(ch/m trên)
BP=MN(ch/m trên)
⇒ΔMNA=ΔBPI(c-g-c)
⇒BI=MA(2 cạnh tương ứng)
c)Vì P là trung điểm của MB ⇒AP là đường trung tuyến của ΔMNP
vì C là trung điểm của AB ⇒MC là đường trung tuyến của ΔMNP
⇒I là trọng tâm của ΔMAB
⇒I,M,C thẳng hàng(đ.p.ch/m)
a) xét tam giác MNI và tam giác MPI có:
MI chung
NI=DI( I là trung điểm của NP)
MN=NP(giả thiết)
=>Tam giác MNI=tam giác MPI
=>Góc NIM=gócPMI
=> MI là tia phân giác của góc PMN